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Abstract

A growing body of work addresses the challenge of processing dynamic graph streams: a graph is
defined by a sequence of edge insertions and deletions and the goal is to construct synopses and compute
properties of the graph while using only limited memory. Linear sketches have proved to be a powerful
technique in this model and can also be used to minimize communication in distributed graph processing.

We present the first linear sketches for estimating vertex connectivity and constructing hypergraph
sparsifiers. Vertex connectivity exhibits markedly different combinatorial structure than edge connectivity
and appears to be harder to estimate in the dynamic graph stream model. Our hypergraph result generalizes
the work of Ahn et al. (PODS 2012) on graph sparsification and has the added benefit of significantly
simplifying the previous results. One of the main ideas is related to the problem of reconstructing
subgraphs that satisfy a specific sparsity property. We introduce a more general notion of graph degeneracy
and extend the graph reconstruction result of Becker et al. (IPDPS 2011).

1 Introduction

Massive graphs arise in many applications. Popular examples include the web-graph, social networks, and
biological networks but, more generally, graphs are a natural abstraction whenever we have information about
both a set of basic entities and relationships between these entities. Unfortunately, it is not possible to use
existing algorithms to process many of these graphs; many of these graphs are too large to be stored in main
memory and are constantly changing. Rather, there is a growing need to design new algorithms for even basic
graph problems in the relevant computational models.

In this paper, we consider algorithms in the dynamic data stream and linear sketching models. In the
dynamic data stream model, a sequence of edge insertions and deletions defines an input graph and the goal
is to solve a specific problem on this graph given only one-way access to the input sequence and limited
working memory. While insert-only graph streaming has been an active area of research for over a decade, it
is only relatively recently algorithms have been found that handle insertions and deletions [2–4,16,19,20,24].
The main technique used in these algorithms is linear sketching where a random linear projection of the input
graph is maintained as the graph is updated. To be useful, we need to be able to a) store the projection of
the graph in small space and b) solve the problem of interest given only the projection of the graph. While
linear sketching is a classic technique for solving statistical problems in the data stream model, it was long
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thought unlikely to be useful in the context of combinatorial problems on graphs. Not only do linear sketches
allow us to process edge deletions (a deletion can just be viewed as a “negative” insertion) but the linearity of
the resulting data structures enables a rich set of algorithmic operations to be performed after the sketch has
been generated. Linear sketches are also a useful technique for reducing communication when processing
distributed graphs. For a recent survey of graph streaming and sketching see [25].

1.1 Our Contributions and Related Work

We present sketch-based dynamic graph algorithms for three basic graph problems: computing vertex
connectivity, graph reconstruction, and hypergraph sparsification. All our algorithms run in (low) polynomial
time, typically linear in the number of edges. However, our primary focus is on space complexity, as is the
convention in much of the data streams literature. In what follows, let n denote the number of vertices in the
graph.

Vertex Connectivity. To date, the main success story for graph sketching has been about edge connectivity,
i.e., estimating how many edges need to be removed to disconnect the graph, and estimating the size of cuts.
In this paper we present the first dynamic graph stream algorithms for vertex connectivity, i.e., estimating how
many vertices need to be removed to disconnect the graph. While it can be shown that edge connectivity is an
upper bound for vertex connectivity, the vertex connectivity of a graph can be much smaller. Furthermore,
the combinatorial structure relevant to both quantities is very different. For example, edge-connectivity is
transitive1 whereas vertex-connectivity is not. A celebrated result by Karger [21] bounds the number of near
minimum cuts whereas no analogous bound is known for vertex removal. Feige et al. [14] discuss issues that
arise specific to vertex connectivity in the context of approximation algorithms and embeddings.

In Section 3, we present two sketch-based algorithms for vertex connectivity. The first algorithm uses
O(kn polylog n) space and constructs a data structure such that, at the end of the stream, it is possible to test
whether the removal of a queried set of at most k vertices would disconnect the graph. We prove that this
algorithm is optimal in terms of its space use. The second algorithm estimates the vertex connectivity up to a
(1 + ε) factor using O(ε−1kn polylog n) space where k is an upper bound on the vertex connectivity.

No stream algorithms were previously known that supported both edge insertions and deletions. Existing
approaches either use Ω(n2) space [28] or only handle insertions [13]. With only insertions, Eppstein et
al. [13] proved that O(knpolylog n) space was sufficient. Their algorithm drops an inserted edge {u, v}
iff there already exists k vertex-disjoint paths between u and v amongst the edges stored thus far. Such an
algorithm fails in the presence of edge deletions since some of the vertex disjoint paths that existed when an
edge was ignored need not exist if edges are subsequently deleted.

Graph Reconstruction. Our next result relates to reconstructing graphs rather than estimating properties of
the graph. Becker et al. [5] show that is possible to reconstruct a d-degenerate graph given an O(dpolylog n)
size sketch of each row of the adjacency matrix of the graph. In Section 4, we define the d-cut-degeneracy
and show that the strictly larger class of graphs that satisfy this property can also be reconstructed given an
O(dpolylog n)-size sketch of each row. Moreover, even if the graph is not d-cut-degenerate we show that
we can find all edges with a certain connectivity property. This will be an integral part of our algorithm for
hypergraph sparsification. For this purpose, we also prove the first dynamic graph stream algorithms for
hypergraph connectivity in this section. We also extend the vertex connectivity results to hypergraphs.

1If it takes at least k edge deletions to disconnect u and v and it takes at least k edge deletions to disconnect v and w, then it
takes at least k edge deletions to disconnect u and w.
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Hypergraph Sparsification. Hypergraph sparsification is a natural extension of graph sparsification. Given
a hypergraph, the goal is to find a sparse weighted subgraph such that the weight of every cut in the subgraph is
within a (1+ε) factor of the weight of the corresponding cut in the original hypergraph. Estimating hypergraph
cuts has applications in video object segmentation [17], network security analysis [30], load balancing in
parallel computing [8], and modelling communication in parallel sparse-martix vector multiplication [7].

Kogan and Krauthgamer [23] recently presented the first stream algorithm for hypergraph sparsification
in the insert-only model. In Section 5, we present the first algorithm that supports both edge insertions
and deletions. The algorithm uses O(n polylog n) space assuming that size of the hyperedges is bounded
by a constant. This result is part of a growing body of work on processing hypergraphs in the data stream
model [12, 23, 26, 27, 29]. There are numerous challenges in extending previous work on graph sparsification
[3, 4, 16, 19, 20] to hypergraph sparsification and we discuss these in Section 5. In the process of overcoming
these challenges, we also identify a simpler approach for graph sparsification in the data stream model.

2 Models and Preliminaries

Graphs Preliminaries. A hypergraph is specified by a set of vertices V = {v1, . . . , vn} and a set of subsets
of V called hyperedges. In this paper we assume all hyperedges have cardinality at most r for some constant
r. The special case when all hyperedges have cardinality exactly two corresponds to the standard definition of
a graph. All graphs and hypergraphs discussed in this paper will be undirected. It will be convenient to define
the following notation: Let δG(S) be the set of hyperedges that cross the cut (S, V \ S) in the hypergraph
G where we say a hyperedge e crosses (S, V \ S) if e ∩ S 6= ∅ and e ∩ (V \ S) 6= ∅. For any hyperedge
e, define λe(G) to be the minimum cardinality of a cut that includes e. A spanning graph H = (V,E) of a
hypergraph G = (V,E) is a subgraph such that |δH(S)| ≥ min(1, |δG(S)|) for every S ⊂ V .

Linear Sketches and Applications. All the algorithms presented in this paper use linear sketches.

Definition 1 (Linear Sketches). A linear measurement of a hypergraph on n vertices is defined by a set
of coefficients {ce : e ∈ Pr(V )} where Pr(V ) is the set of all subsets of V of size at most r. Given a
hypergraph G = (V,E), the evaluation of this measurement is defined as

∑
e∈E ce. A sketch is a collection

of (non-adaptive) linear measurements. The cardinality of this collection is referred to as the size of the
sketch. We will assume that the magnitude of the coefficients ce is poly(n). We say a linear measurement is
local for node v if the measurement only depends on hyper-edges incident to v, i.e., ce = 0 for all hyper-edges
that do not include v. We say a sketch is vertex-based if every linear measurement is local to some node.

Linear sketches have long been used in the context of data stream models because it is possible to
maintain a sketch of the stream incrementally. Specifically, if the next stream update is an insertion or deletion
of an edge, we can update the sketch by simply adding or subtracting the appropriate set of coefficients.
Sketches are also useful in distributed settings. In particular, the model considered by Becker et al. [5] was as
follows: suppose there are n+ 1 players P1, . . . , Pn and Q. The input for player Pi is the set of (hyper-)edges
that include the ith vertex of a graph G. Player Q wants to compute something about this graph such as
determining whether G connected. To enable this, each of the players P1, . . . , Pn simultaneously sends
a message about their input to Q such that the set of these n messages contains sufficient information to
complete Q’s computation. In the case of randomized protocols, we assume that all players have access to
public random bits. The goal is to minimize the maximum length of the n messages that are sent to Q. If a
vertex-based sketch exists for the problem under consideration, then for each linear measurement, there is a
single player that can evaluate this message and send it to Q.
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3 Vertex Connectivity

A natural approach to determining vertex connectivity could be to try to mimic the algorithm of Cheriyan et
al. [11]. They showed that the union of k disjoint “scan first search trees” (a generalization of breadth-first
search trees) can be used to determine if a graph is k vertex connected. A similar approach worked in data
stream model for the case of edge-connectivity (which we discuss in further detail in the next section) but in
that case the trees to be constructed could be arbitrary. Unfortunately, we can show (see appendix) that any
algorithm for constructing a scan-first search tree in the data stream model requires Ω(n2) space even when
there are no edge deletions.

To avoid this issue, we take a different approach based on finding arbitrary spanning trees for the induced
graph on a random subset of vertices.2 We will use the following result for finding these spanning trees.

Theorem 2 (Ahn et al. [2]). For a graph on n vertices, there exists a vertex-based sketch of sizeO(n polylog n)
from which we can construct a spanning forest with high probability.

Note that in this section we restrict our attention to graphs rather than hypergraphs. However, in the next
section we will explain how the vertex connectivity results extend to hypergraphs.

3.1 Warm-Up: Supporting Vertex Connectivity Queries

For i = 1, 2, . . . , R := 16 · k2 lnn, let Gi be a graph formed by deleting each vertex in G with probability
1− 1/k. Let Ti be an arbitrary spanning forest of Gi and define H = T1 ∪ T2 ∪ . . . ∪ TR.

Lemma 3. Let S be an arbitrary collection of at most k vertices. With high probability, H \ S is connected
iff G \ S is connected.

Proof. First we note that H has the same set of vertices as G with high probability. This follows because
the probability a given vertex is not in H is (1 − 1/k)R ≤ exp(−16 · k · lnn) = n−16k and hence by an
application of the union bound, all vertices in G are also in H with probability at least 1− n−(16k−1). Then
since H is a subgraph of G, then G \ S disconnected implies H \ S disconnected. It remains to prove that
G \ S connected implies H \ S connected.

Assume G \ S is connected. Consider an arbitrary pair of vertices s, t 6∈ S and let s = v0 → v1 → v2 →
. . .→ v` = t be a path between s and t in G \ S. Then note that there is a path between vi and vi+1 in H \ S
if there exists Gi such that Gi ∩ S = ∅ and vi, vi+1 ∈ H \ S. This follows because if {vi, vi+1} ∈ Gi and
Gi ∩ S = ∅ then Ti \ S either contains {vi, vj} or a path between between vi and vj . Hence,

P [vi and vi+1 are connected in Ti \ S] ≥ 1/k2(1− 1/k)k

and therefore

P [vi and vi+1 are disconnected in Ti \ S for all i ∈ [R]] ≤ (1− 1/k2(1− 1/k)k)R ≤ 1/n4 .

Taking the union bound over all ` < n pairs {vi, vi+1}, we conclude that s and t are connected in H \ S with
probability at least 1 − 1/n3. By applying the union bound again, with probability at least 1 − 1/n2, s is
connected in H \ S to all other vertices.

2We note that the idea of subsampling vertices was recently explored by Censor-Hillel et al. [9, 10]. They showed that if
each vertex of a k-vertex-connected graph is subsampled with probability p = Ω(

√
logn/k) then the resulting graph has vertex

connectivity Ω(kp2). We do not make use of this result in our work as it does not lead to an approximation factor better than
√
k.
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Our algorithm constructs a spanning forest for each of G1, . . . , GR using the algorithm referenced in
Theorem 2. Note that since each Gi has O(n/k) vertices with high probability, we can construct these R
trees in R×O(n/k polylog n) = O(nk polylog n) space. This gives us the following theorem.

Theorem 4. There is a sketch-based dynamic graph algorithm that uses O(knpolylog n) space to test
whether a set of vertices S of size at most k disconnects the graph. The query set S is specified at the end of
the stream.

We next prove that the above query algorithm is space-optimal.

Theorem 5. Any dynamic graph algorithm that allows us to test, with probability at least 3/4, whether a
queried set of at most k vertices disconnects the graph requires Ω(kn) space.

Proof. The proof is by a reduction from the communication problem of indexing [1]. Suppose Alice has
a binary string x ∈ {0, 1}(k+1)×n indexed by [k + 1]× [n] and Bob wants to compute xi,j for some index
(i, j) ∈ [k + 1]× [n] that is unknown to Alice. This requires Ω(nk) bits to be communicated from Alice to
Bob if Bob is to be successful with probability at least 3/4. Consider the protocol where the players create a
bipartite graph on vertices L∪R where L = {l1, . . . , lk+1} and R = {r1, . . . , rn}. Alice adds edges {li, rj}
for all pairs (i, j) such that xi,j = 1. Alice runs the algorithm and sends the state to Bob. Bob adds edges
{r`, r`′} for all `, `′ 6= j and deletes all vertices in L except li. Now rj is connected to the rest of the graph
iff the xi,j = 1.

3.2 k-vertex connectivity

For i = 1, 2, . . . , R := 160·k2ε−1 lnn, letGi be a graph formed by deleting each vertex inGwith probability
1− 1/k. As before, let Ti be an arbitrary spanning forest of Gi and define H = T1 ∪ T2 ∪ . . . ∪ TR.

Theorem 6. Let S be a subset of V of size k. Consider any pair of vertices u, v ∈ V \ S such that there are
at least (1 + ε)k vertex-disjoint paths between u and v in G. Then,

P [u and v are connected in GS ] ≥ 1− 4/n10k

where GS = ∪i∈U(S)Gi and U(S) = {i : Gi ∩ S = ∅} is the set of sampled graphs with no vertices in S.

Proof. We first argue that |U(S)| is large with high probability. Then E [|U(S)|] = (1 − 1/k)kR ≥ R/4.
By an application of the Chernoff bound:

P [|U(S)| ≤ 1/2×R/4] ≤ e−1/4×R/4×1/3 < 1/n10k .

In the rest of the proof we condition on event |U(S)| ≥ r := R/8.
Note that there are t ≥ εk vertex-disjoint paths between u and v in G \ S. Call these paths P1, . . . , Pt.

For each Pi, let ai be the edge incident to u, let ci be the edge incident to v, and let Bi be the remaining
edges in Pi. Note that ai and ci need not be distinct and Bi could be empty.

Claim. The followings three probabilities are each larger than 1− 1/n10k:

P [ai ∈ GS for at least 3t/4 values of i] , P [Bi ⊆ GS for at least 3t/4 values of i]

P [ci ∈ GS for at least 3t/4 values of i] .
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Proof of Claim. Each edge in Bi is not present in GS with probability (1 − 1/k2)r. Hence, by the union
bound, P [Bi 6⊆ GS ] ≤ |Bi|(1− 1/k2)r. Also by the union bound,

P [Bi 6⊆ GS for more than t/4 values of i] <
(
t

t/4

)
(n(1− 1/k2)r)t/4 < et ln 2+(lnn−r/k2)t/4 < 1/n10k .

The proofs for ai and ci are entirely symmetric so we just consider ai. Consider the set U ′(S) =
U(S) ∩ {j : u ∈ Gj}. Note that for j ∈ U ′(S) we have P [ai ∈ Gj ] = 1/k and by the union bound,

P
[
ai 6∈ ∪j∈U ′(S)Gj for at least t/4 values of i

]
≤
(
t

t/4

)
(1− 1/k)|U

′(S)|t/4 ≤ 2t exp

(
−|U ′(S)|t

(4k)

)
.

Let E be the event that |U ′(S)| ≤ |U(S)|/(2k). Then, by an application of the Chernoff bound:

P [ai 6∈ GS for at least t/4 values of i]

≤ P [E] + P
[
ai 6∈ ∪j∈U ′(S)Gj for at least t/4 values of i | ¬E

]
≤ exp(−1/4× |U(S)|/k × 1/3) + P

[
ai 6∈ ∪j∈U ′(S)Gj for at least t/4 values of i | ¬E

]
≤ exp(−1/4× r/k × 1/3) + 2t exp(−r/(2k)× t/(4k)) < 1/n10k .

It follows from the claim that there exists i such that Pi ∈ GS (and therefore u and v are connected inGS)
with probability at least 1− 3/n10k. The conditioning on |U(S)| ≥ r decreases this by another 1/n10k.

Corollary 7. If G is (1 + ε)k-vertex-connected then H is k-vertex-connected with high probability. If H is
k-vertex connected then G is k-vertex connected.

Proof. The first part of the corollary follows from Theorem 6 by applying the union bound over all O(nk)
subsets of size at most k and O(n2) choices of u and v. Note that u and v connected in GS implies u and v
are connected in H since H includes a spanning forest of GS . The second part is implied by the fact H is a
subgraph of G.

As in the previous section, our algorithm is simply to construct H be using the algorithm referenced
in Theorem 2 to construct T1, . . . , TR. We can then run any vertex connectivity algorithm on H in post-
processing. Since each Gi has O(n/k) vertices with high probability, we can construct these R trees in
R×O(n/k · polylog n) = O(nkε−1 polylog n) space. This gives us the following theorem.

Theorem 8. There is a sketch-based dynamic graph algorithm that uses O(knε−1 polylog n) space to
distinguish (1 + ε)k-vertex connected graphs from k-connected graphs.

4 Reconstructing Cut-Degenerate Hypergraphs

We next present sketches for reconstructing cut-degenerate hypergraphs. Recall that a hypergraph is d-
degenerate if all induced subgraphs have a vertex of degree at most d. Cut-degeneracy is defined as follows.

Definition 9. A hypergraph is d-cut-degenerate if every induced subgraph has a cut of size at most d.

The following lemma establishes that this is a strictly weaker property than d-degeneracy.
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Lemma 10. Any hypergraph that is d-degenerate is also d-cut-degenerate. There exists graphs that are
d-cut-degenerate but not d-degenerate.

Proof. Since the degree of a vertex v is exactly the size of the cut ({v}, V \ {v}) it is immediate that d-
degeneracy implies d-cut-degeneracy. For an example that d-cut-degenerate does not imply it is d-degenerate
consider the graph G on eight vertices {v1, v2, v3, v4, u1, u2, u3, u4} with edges {vi, vj}, {ui, uj} for all i, j
except i = 1, j = 4 and edges {v1, u1} and {v4, u4}. Then G has minimum degree 3 and is therefore not
2-degenerate while it is 2-cut-degenerate.

Becker et al. [5] show that is possible to reconstruct a d-degenerate graph in the simultaneous commu-
nication model using a O(d polylog n) bit message from each player. We will show that it is also possible
to reconstruct any d-cut-degenerate graph using O(dpolylog n) bit messages. Even if the graph is not
cut-degenerate, we show that is possible to reconstruct all edges with a certain connectivity property. We will
subsequently use this fact in Section 5.

4.1 k-Skeletons for Hypergraphs

We first review the existing results on constructing k-skeletons [2] that we will need for our new results. In
doing so, we generalize the previous work to the case of hypergraphs. In particular, this leads to the first
dynamic graph algorithm for determining hypergraph connectivity.

Definition 11 (k-skeleton). Given a hypergraph H = (V,E), a subgraph H ′ = (V,E′) is a k-skeleton of H
if for any S ⊂ V , |δH′(S)| ≥ min(|δH(S)|, k).

In particular, any spanning graph is a 1-skeleton and it can be shown that F1 ∪ F2 ∪ . . . ∪ Fk is a
k-skeleton [2] of G if Fi is a spanning graph of G \ (∪i−1j=1Fj). The next lemma establishes that given an
arbitrary k-skeleton of a graph we can exactly determine the set of edges with λe(G) ≤ k − 1.

Lemma 12. Let H be a k-skeleton of G then λe(H) ≤ k − 1 iff λe(G) ≤ k − 1.

Proof. Since H is a subgraph λe(H) ≤ λe(G) and hence λe(G) ≤ k − 1 implies λe(H) ≤ k − 1. Using
the fact that H is a k-skeleton λe(H) ≥ min(k, λe(G)) and hence, if λe(H) ≤ k − 1 it must be that
λe(G) ≤ k − 1.

Constructing Spanning Graphs. For each vertex vi ∈ V , define the vector ai ∈ {−1, 0, 1, 2, . . . , r− 1}d
where d =

∑r
i=2

(
n
i

)
is the number of possible hyperedges of size at most r:

aie =


|e| − 1 if i = min e and e ∈ E
−1 if i ∈ e \min e and e ∈ E
0 otherwise

where e ranges over all subsets of V of size between 2 and r and min e denotes the smallest ID of a node in e.
Observe that these vectors have the property that for any subset of vertices {vi}i∈S , the non-zero entries of∑

i∈S a
i correspond exactly to δ(S). This follows because the only subsets of

{|e| − 1,−1,−1, . . . ,−1︸ ︷︷ ︸
|e|−1

}
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that sum to zero are the empty set and the entire set. Hence, the e-th coordinate of
∑

i∈S a
i is zero iff either

e 6∈ E or e ⊂ S or e ⊂ V \ S.
The rest of algorithm proceeds exactly as in the case of (non-hyper) graphs [2] and a reader that is

very familiar with the previous work should feel free to skip the remainder of Section 4.1. We construct
the sketches Ma1, . . . ,Man where M is chosen according to a distribution over matrices Rk×d where
k = polylog(d). The distribution has the property that for any a ∈ Rd, it is possible to determine the index
of a non-zero entry of a given Ma with probability 1− 1/ poly(n). Such as distribution is known to exist by
a result of Jowhari et al. [18]. Given Ma1, . . . ,Man we can find an edge across an arbitrary cut (S, V \ S).
To do this, we compute

∑
i∈SMai = M(

∑
i∈S a

i). We can then determine the index of a non-zero entry of∑
i∈S a

i which corresponds to an element of δ(S) as required. It may appear that to test connectivity we
need to test all 2n−1 − 1 possible cuts. Since the failure probability for each cut is only inverse polynomial in
n this would be problematic. However, it is possible to be more efficient and only test O(n) cuts. See Ahn et
al. [2] for details.

Theorem 13 (Spanning Graph Sketches). There exists a vertex-based sketch A of size O(n polylog n) such
that we can find a spanning graph of a hypergraph G from A(G) with high probability.

Note the above theorem can be substituted for Theorem 2 and the resulting algorithms for vertex
connectivity go through for hypergraphs unchanged.

Constructing k-skeletons. As mentioned above, it suffices to find F1, . . . , Fk such that Fi is a spanning
graph ofG\ (∪i−1j=1Fj). Do to this we use k independent spanning graph sketchesA1(G),A2(G), . . . ,Ak(G)

as described in the previous section. We may construct F1 from A1(G) because this is the functionality of a
spanning graph sketch. Then, assuming we have already constructed F1, . . . , Fi−1 we can construct Fi from:

Ai(G− F1 − F2 . . .− Fi−1) = Ai(G)−
i−1∑
j=1

Ai(Fj) .

Theorem 14 (k-Skeleton Sketches). There exists a vertex-based sketch B of size O(kn polylog n) such that
we can find of a k-skeleton a hypergraph G from B(G) with high probability.

4.2 Beyond k-Skeletons and Reconstructing Cut-Degenerate Hypergraphs

One might be tempted as ask whether it was necessary to use k independent spanning graph sketches
A1, . . . ,Ak rather that reuse a single sketch A. If each application of the sketch A fails to return a spanning
graph with probability δ, one might hope to use the union bound to argue that the probability that A fails on
any of the inputs G,G− F1, G− F1 − F2, . . . , G− F1 − . . .− Fk−1 is at most kδ. But this would not be a
valid application of the union bound! The union bound states that for any fixed set of t events B1, . . . , Bt,
we have P [B1 ∪ . . . ∪Bt] ≤

∑
i P [Bi]. The issue is that the events in the above example are not fixed, i.e.,

they can not be specified a priori, since spanning graph Fi is determined by the randomness in the sketch.3

We belabor this point because, while the union bound was not applicable in the above case, we will need it to
prove our next result in a situation that is only subtly different and yet the union bound is valid.

3Another way to see that using the same sketch cannot work is that if it were possible to repeatedly remove each spanning graph
from the sketch of the original graph, we would be able to reconstruct the entire graph using only a sketch of size O(npolylogn).
Clearly this is not possible because it requires at Ω(n2) bits to specify an arbitrary graph on n vertices.
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4.2.1 Finding the light edges

Given a graph G = (V,E) and a postive integer k, recursively define

Ei = {e ∈ E : λe(G \
i−1⋃
j=1

Ei) ≤ k}

and denote the union of these sets as:
lightk(G) =

⋃
i≥1

Ei .

Note that if G is d cut-degenerate then lightd(G) = E. Furthermore, there is at most n values of i such that
Ei is non-empty since removing each non-empty set Ei from the graph increases the number of connected
components.

Suppose B(G) is a sketch that returns an arbitrary (k + 1)-skeleton of G with failure probability
δ = 1/ poly(n). Then, since E1, E2, . . . , En are sets defined solely by the input graph (and not any
randomness in a sketch) we can specify the fixed events

Bi = “We fail to return a (k + 1)-skeleton sketch of G− E1 − . . .− Ei given B(G− E1 − . . .− Ei)”

and therefore use the union bound to establish that the probability that we find a (k + 1)-skeleton of each of
the relevant graphs with failure probability at most nδ = 1/ poly(n).

We can therefore find the sets E1, E2, . . . , En as follows. Let Si be an arbitrary (k + 1) skeleton of
G− E1 − . . . Ei−1. Assuming we have already determined E1, . . . , Ei−1, we can find Si using:

B(G− E1 − E2 . . .− Ei−1) = B(G)−
i−1∑
j=1

B(Ej) .

Then, by appealing to Lemma 12, we know that we can then uniquely determine Ei given Si.

Theorem 15. There exists a vertex-based sketch of size O(kn polylog n) from which lightk(G) can be
reconstructed for any hypergraph G. In the case of a k-cut-degenerate graph, this is the entire graph.

4.2.2 What are the light edges?

In this section, we restrict our attention to graphs rather than hypergraphs and show that the set of edges in
lightk(G) can be defined in terms of the notion of strong connectivity introduced by Benczúr and Karger [6].

Lemma 16. lightk(G) = {e : ke ≤ k} where k{u,v} is the maximum k such that there is a set S ⊂ V
including u and v such that the induced graph on S is k-edge-connected.

Proof. Define te to be the minimum value of k such that e ∈ lightk(G). We prove that te = ke and the
result follows. To show ke ≥ te suppose te = t and then note that e survives when we recursively remove
edges with edge connectivity t− 1. But the remaining components in this graph are at least (t− 1) + 1 = t
connected so ke ≥ t. To show that ke ≤ te, suppose ke = k. Then there exists a vertex induced subgraph
H containing e that is k-connected. But when we recursively remove edges with edge connectivity at most
k − 1 then no edge in H can be removed. Hence, te > (k − 1) and so te ≥ k.
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5 Hypergraph Sparsification

In this final section, we present a vertex-based sketch for constructing a sparsifier of a hypergraph. This
yields the first dynamic graph stream algorithm for constructing a sparsifier of a hypergraph. As an added
bonus, our approach gives an algorithm and analysis that is significantly simpler than previous work on the
specific case of graph sparsification [3, 16].

Definition 17 (Hypergraph Sparsifier). A weighted subgraph H = (V,E′, w) of a hypergraph G = (V,E)
is a sparsfier if for all S ⊂ V ,

∑
e∈δH(S)w(e) = (1± ε)|δG(S)|.

Previous approaches to sparsification in the dynamic stream model relied on work by Fung et al. [15]. To
construct a graph sparsifier, they showed that it was sufficient to independently sample every edge in the
graph with probability O(ε−2λ−1e log n). Using their work required coopting their machinery and modifying
it appropriately (e.g., replacing Chernoff arguments with careful Martingale arguments). Another downside
to the previous approach is that the Fung et al. result does not seem to extend to the case of hypergraphs.4

Using our new-found ability (see the previous section) to find the entire set of edges that are not k-
strong, we present an algorithm that a) has a simpler, and almost self-contained, analysis and b) extends to
hypergraphs. Our approach is closer in spirit to Benczúr and Karger’s original work on sparsification [6]
which in turn is based on the following result by Karger [22]: if we sample each edge with probability
p ≥ p∗ = cε−2λ−1 log n where λ is the cardinality of the minimum cut and c ≥ 0 is some constant, and
weight the sampled edges by 1/p then the resulting graph is a sparsifier with high probability.

The idea behind our algorithm is as follows. For a hypergraph G, if we remove the hyperedges lightk(G)
where k = 2cε−2 log n, then every connected component in the remaining hypergraph has minimum cut of
size greater than 2cε−2 log n. Hence, for each of these components p∗ ≤ 1/2. Therefore, the graph formed
by sampling the hyperedges in G \ lightk(G) with probability 1/2 (and doubling the weight of sampled
hyperedges) and adding the set of hyperedges in lightk(G) with unit weights is a sparsifier of G. We then
repeat this process until there are no hyperedges left to sample.

Algorithm.

1. Generate a series of graphs G0, G1, G2 . . . where Gi is formed by deleting each hyperedge in Gi−1
independently with probability 1/2 and G0 = G.

2. For i = 0, 1, 2, . . . , ` = 3 log n:

(a) Let Fi = lightk(Hi) where k = O(ε−2(log n+r)) where Hi = Gi \ (F0∪F1∪F2∪ . . .∪Fi−1)

3. Return
⋃`
i=0 2i · Fi where 2i · Fi is the set of hyperedges in Fi where each is given weight 2i.

Analysis. The following lemma uses an argument due to Karger [21] combined with a hypergraph cut
counting result by Kogan and Krauthgamer [23].

Lemma 18. 2Hi+1 ∪ Fi is a (1 + ε)-sparsifier for Hi.

4For the reader familiar with Fung et al. [15], the issue is finding a suitable definition of cut-projection for hypergraphs and then
proving a bound on the number of distinct cut-projections.
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Proof. It suffices to prove that 2Hi+1 is a (1 + ε)-sparsifier for Hi \ Fi. Furthermore, it suffices to consider
each connected component of Hi \ Fi separately.

Let C be an arbitrary connected component of Hi \ Fi and note that C has a minimum cut of size at
least k. Let C ′ be the graph formed by deleting each hyperedge in C with probability 1/2. Consider a cut of
size t in C and let X be the number of hyperedges in this cut that are in C ′. Then E [X] = t/2 and by an
application of the Chernoff bound, P [|X − t/2| ≥ εt/2] ≤ 2 exp(−ε2t/6).

The number of cuts of size at most t is exp(O(rt/k + t/k · log n)) by appealing to a result by Kogan
and Krauthgamer [23]. By an application of the union bound, the probability that there exists a cut of size t
such that the number of hyperedges in corresponding cut in C ′ is not (1± ε)t/2 is at most

2 exp(−ε2t/6) · exp(O(rt/k + t/k · log n)) .

This probability is less than 1/n10 if k ≥ cε−2(log n + r) for some sufficiently large constant c. Hence,
taking the union bound over all t ≥ k ensures that with probability at least 1/n8, for every cut in C, the
fraction of edges in the corresponding cut in C ′ is (1± ε)/2.

Theorem 19.
⋃`
i=0 2i · Fi is a (1 + ε)`-sparsifier of G where ` = 3 log n.

Proof. The theorem follows by repeatedly applying Lemma 18. Specifically,

1. F`−1 is a (1 + ε) sparsifier for H`−1 since H` is the empty graph with high probability.

2. 2H`−1 ∪ F`−2 is a (1 + ε)-sparsifier for H`−2 and so 2F`−1 ∪ F`−2 is a (1 + ε)2-sparsifier for H`−2

3. 2H`−2 ∪ F`−3 is a (1 + ε)-sparsifier for H`−3 and so 4F`−1 ∪ 2F`−2 ∪ F`−3 is a (1 + ε)3-sparsifier
for H`−3

We continue in this way until we deduce
⋃`
i=0 2i · Fi is a (1 + ε)`-sparsifier for H0 = G0.

By re-parameterizing ε← ε/(2`) and using the sketches from Section 4, we establish the next theorem.

Theorem 20. There exists a vertex-based sketch of size O(ε−2n polylog n) from which we can construct a
(1 + ε) hypergraph sparsifier.

Acknowledgements. We thank Jennifer Chayes for prompting us to investigate hypergraph connectivity.
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A Scan-First Trees

A scan first search tree (SFST) of a graph [11] is defined as follows: The tree is initially empty, all vertices
except the root (chosen arbitrarily) are unmarked, and all vertices are unscanned. At each step we scan
an marked but unscanned vertex. For each vertex x that is being scanned, all edges from x to unmarked
neighbors of x are added to the tree and the unmarked neighbors are marked. This continues until no marked
but unscanned vertices remain.

Theorem 21. Any data stream algorithm that constructs a SFST with probability at least 3/4 requires Ω(n2)
space.

Proof. The proof is by a reduction from the communication problem of indexing [1]. Suppose Alice has a
binary string x ∈ {0, 1}n2

indexed by [n]×[n] and Bob wants to compute xi,j for some index (i, j) ∈ [n]×[n]
that is unknown to Alice. This requires Ω(n2) bits to be communicated from Alice to Bob if Bob is to learn
xi,j with probability at least 3/4. Suppose we have a data stream algorithm for constructing an SFST. Alice
creates a graph on nodes T ∪ U ∪ V ∪W where T = {t1, . . . , tn}, U = {u1, . . . , un}, V = {v1, . . . , vn},
and W = {w1, . . . , wn}. She adds edges {tk, u`} and {v`, tk} for each `, k such that x`,k = 1. Alice runs
the scan-first search algorithm and sends the contents of her memory to Bob. Bob adds the edge {ui, vi}.
Note that any SFST includes all neighbors of ui or vi. In particular, xi,j = 1 iff at least one of {tj , ui} or
{vi, wj} is present in the SFST constructed. Hence, the algorithm must have used Ω(n2) space.
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