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Abstract

We consider the problem of identifying correlations in
data streams. Surprisingly, our work seems to be the
first to consider this natural problem. In the central-
ized model, we consider a stream of pairs (i, j) ∈ [n]2

whose frequencies define a joint distribution (X, Y ). In
the distributed model, each coordinate of the pair may
appear separately in the stream. We present a range of
algorithms for approximating to what extent X and Y
are independent, i.e., how close the joint distribution
is to the product of the marginals. We consider various
measures of closeness including ℓ1, ℓ2, and the mutual
information between X and Y . Our algorithms are
based on “sketching sketches”, i.e., composing small-
space linear synopses of the distributions. Perhaps
ironically, the biggest technical challenges that arise
relate to ensuring that different components of our es-
timates are sufficiently independent.

1 Introduction

The data-stream model has enjoyed considerable
attention for more than ten years and a wide
range of problems have been tackled including
estimating quantiles (e.g., [19, 14, 22]), frequency
moments and finding frequent items (e.g., [2,
25, 9, 7]), estimating the difference between the
underlying distribution of two streams (e.g., [24,
13, 20]), histograms and clustering (e.g., [21, 11,
12]), graph problems (e.g., [5, 16, 17]), among
others. For a more comprehensive overview of the
area the reader is directed to excellent surveys
[28, 4]. Surprisingly, the very natural problem
of identifying correlations in data-streams has,
to date, not been considered. Note that two
random variables can have similar distributions
and yet be entirely independent. Conversely, one
can be a function of the other and yet have
distributions that are far apart. In this paper, we
consider the problem of approximating the degree
of correlation between two random variables.

Identifying correlations is a fundamental prob-
lem in a variety of settings including network mon-
itoring, sensor networks, and communication ap-
plications. For example, correlation between the
traffic observed at two different routers could pro-

vide an early warning of the onset of a coordi-
nated denial of service attack or the existence of
zombie machines under some central control. In
a sensor network, correlations between concurrent
measurements at different sensors may help deter-
mine the geometry of the area in which the sen-
sors have been deployed. In many communication
problems, multiple signals need to be transmitted
simultaneously. If these signals are correlated that
it makes sense to jointly encode the signals [15].

Another application would be to determine
the utility of various k-gram models of text [27].
Models for language become more accurate as they
take into account more context of a given work or
character, e.g., the previous k words or characters.
However, the computational overhead of using the
model increases as one increases k. Determining
the strength of the correlation between characters
k apart in the string would help determine the
optimum value of k.

Empirical Distributions and Partial Inde-

pendence: Consider two random variables X
and Y on [n]. X and Y are independent if
Pr [X = i, Y = j] = Pr [X = i] Pr [Y = j] for all
i, j ∈ [n]. In this paper we consider X , Y and the
joint random variable (X, Y ) being defined em-
pirically: the stream codifes pairs from [n]2 and
Pr [X = i, Y = j] is defined as the fraction of pairs
equal to (i, j), Pr [X = i] will the fraction of pairs
of the form (i, ·) etc.1 This being the case, even if
the pairs originate from two independent sources,
it is unlikely that the distributions defined empir-
ically will be perfectly independent. However, for
sufficiently long streams, if the pairs are defined
by two independent sources then Pr [X = i, Y = i]

1Considering empirical distributions rather than the
distribution of a supposed “source” is standard in the
literature on the data-stream model. The problem of
combining the restrictions of the data-stream model with
the notion of learning something about a source has only
recently been considered [10, 23].



should approach Pr [X = i] Pr [Y = i] for all i, j.
When processing finite length streams it would
therefore be useful to approximate this distance
between the joint distribution is to the product
distribution. There are numerous ways of doing
this. In the paper we consider approximating the
ℓ1 and ℓ2 difference between the joint distribution
and the product distribution. We also consider
approximating the mutual information between X
and Y :

I(X ; Y ) = H(X)−H(X |Y )

where H(X) = −
∑

i Pr [X = i] lg Pr [X = i] is the
entropy of the distribution X and

H(X |Y ) =
∑

i,j

Pr [X = i, Y = j] lg
Pr [Y = j]

Pr [X = i, Y = j]

is the conditional entropy. The mutual informa-
tion should be zero if X and Y are independent.
There is a natural relationship between mutual in-
formation and the ℓ1 distance between the joint
distribution and the product distribution. If pi =
Pr [X = i] and pj

i = Pr [X = i|Y = j] then the ℓ1

distance equals Ei∼Y [ℓ1(p, pj)] while I(X ; Y ) =
Ei∼Y [DKL(p, pj)] where DKL is the Kullback-
Liebler divergence, DKL(p, q) =

∑

i pi lg(qi/pi).
There are numerous ways in which the stream

can codify pairs from [n]2. In the centralized model

the elements of the stream are the pairs them-
selves. For example these pairs could correspond
to the source IP’s of two packets being forwarded
at the same time at a network router. In the
distributed model there are two streams that are
being observed at two different locations. Each
stream will define a marginal. We assume the
stream are synchronized in the sense that we con-
sider the i-th element of the stream defining X
occurring at the same time as the i-th element of
the stream defining Y . These two elements define
the pair from [n]2 and therefore empirically define
a joint distribution (X, Y ) as described above.

Our Results and Techniques: Most of our
algorithms for estimating independence are based
on sketching sketches, i.e., composing small-space
synopses of data. Perhaps ironically, the main
difficulty in this approach are ensuring that there
is sufficient independence between components of
our estimators. For example, standard results that
show 4-wise independence is sufficient for various
types are sketch, are not enough when composing

these sketches. Similarly, subtle issues arise in
the application of pseudo-random-generators that
need to be addressed.

Our algorithms and lower-bounds include:

1. A 1-pass, Õ(ǫ−2 log δ−1)-space, (1 + ǫ)-factor
approximation (w.p. 1−δ) of the ℓ2 difference
between the joint and product distributions in
the centralized model.

2. For the ℓ1 difference between the joint and
product distributions in the centralized model
we present:

(a) A 1-pass, Õ(log δ−1)-space, (1+ǫ)-factor
approximation w.p. 1− δ.

(b) A 1-pass, Õ(ǫ−2n log δ−1)-space, (1+ ǫ)-
factor approximation w.p. 1− δ.

(c) A 2-pass, Õ(ǫ−4 log2 δ−1)-space, ǫ-
additive approximation w.p. 1− δ.

3. A 1-pass, Õ(ǫ−2 log δ−1)-space, ǫ-additive ap-
proximation (w.p. 1 − δ) of I(X ; Y ) in the
centralized model. We show that any 5/4-
factor approximation (w.p. 3/4) requires Ω(n)
space.

4. Finally we present mainly negative results
in the distributed model in the distributed
model.

Related Work: The problems of testing inde-
pendence and k-wise independence were consid-
ered by Batu et al. [6] and Alon et al. [1] in
the model in which independent samples from the
joint distribution were available. Here the goal
was primarily to minimize the number of samples
required to determine whether the relevant ran-
dom variables were independent or far from inde-
pendent. In contrast, we consider the space com-
plexity of estimating how close the variables are to
being independent and consider the distributions
to be empirically defined by the data available.

Chakribarti et al. [8] considered the problem
of trying to determine the k-th order entropy of
a string given the constraints of the data stream
model. The k-th order entropy captures how
“surprising” a character is in the string given one
knows the preceding k characters. This is related
to the correlation between characters that are k
apart in the string since if two such characters are
independent, then the entropy of a character given
the previous k characters should be equal to the



entropy of a character given the previous k − 1
characters.

Finally, we note that our problem is related,
but different, to the problem of trying to estimate
correlated aggregates [18, 3]. In this model, the
stream consists of a series of pairs (x, y). The goal
is to estimate functions such as the median of all
x for which the corresponding y is less than the
average value of y.

2 Preliminaries

Notation: Let [n] := {1, . . . , n} and write x ∈R S
to mean that x is randomly chosen from the multi-
set S. For random variables X and Y on the same
base set, we say X ∼ Y if they have the same
distribution. We say Q̂ is an (t, δ)-approx. for Q
if for some 1/t ≤ c ≤ 1, Pr[c ≤ Q̂/Q ≤ tc] ≥ 1− δ.
Similarly Q̂ is an (ǫ, δ)-additive-approx. for Q if
Pr[|Q̂ − Q| ≤ ǫ] ≥ 1 − δ. Õ omits all factors of
polylog(m, n). Finally we denote the ℓ2 norm of x
as ‖x‖ and the ℓ1 norm as |x|.

Lower-Bounds: The proofs of our lower bounds
all use the following standard technique of reduc-
tion from a communication complexity problem.
Rather than repeating details in each proof we re-
view the general proof template here. Consider
a 2-party communication problem in which Alice
has input x and Bob has input y and together
they wish to compute f(x, y). We suppose that
there exists a streaming algorithm A that takes P
passes over a stream and uses W working mem-
ory to approximate some quantity. If there exists
sets SA(x) and SB(y) such that the value returned
by A on the stream formed by any ordering of
SA(x)∪SB(y) determines f(x, y), then there exists
a (2P − 1)-round protocol that requires O(PW )
bits: Alice runs A on SA(x), communicates the
memory state of A, Bob runs A initiated with
this memory state on SB(x) and communicates the
memory state of A to Alice and so on. Hence, a
lower bound for the communication problem yields
a lower-bound for P and/or W .

3 Approximating Partial Independence

Consider a stream 〈a1, . . . , am〉 where ak ∈ [n]2

and define random variables X and Y on [n] by

Pr [X = i, Y = j] = |{k : ak = (i, j)}|/m

Pr [X = i] = |{k : ak = (i, ·)}|/m

Pr [Y = j] = |{k : ak = (·, j)}|/m.

Let rij = Pr [X = i, Y = j], pi = Pr [X = i],
qj = Pr [Y = j] and sij = Pr [X = i] Pr [Y = j].
I.e., r is the joint distribution, p and q are the
marginal distributions of r, and s is the product
distribution of the marginals. In the next three
sections we present algorithms and lower-bounds
for approximating the degree of independence
between X and Y .

3.1 Approximating ℓ2-independence: In
the classic result of Alon, Matias, and Szegedy [2]
it was shown that numerous 4-wise independent
vectors z ∈ {−1, 1}n

2

could be used to estimate
the ℓ2 difference between two distributions on
[n]2. For our application, the elements of z will be
the elements of the outer product of two vectors
x, y ∈ {−1, 1}n which are 4-wise independent. As
such, they can be shown to 3-wise independent
but not 4-wise independent, e.g.,

z1,1z2,2 = (x1
1x

2
1)(x

1
2x

2
2) = (x1

1x
2
2)(x

1
2x

2
1) = z1,2z2,1 .

However, by exploiting the geometry of the de-
pendencies, the next lemma establishes that the
elements of z are still sufficiently independent.

Lemma 3.1. Consider x1, x2 ∈ {−1, 1}n where

each vector is 4-wise independent. Let v ∈ R
n2

and zi = x1
i1x

2
i2 . Define Υ = (

∑

i∈[n]2 zivi)
2. Then

E [Υ] =
∑

i∈[n]2 v2
i and Var [Υ] ≤ 3 (E [Υ])

2
.

Proof. While z is 2-wise independent, as noted
above z is not 4-wise independent. However, z
is “almost” 4-wise independent in the sense that
zi, zj, zk, and zl only fail to be independent if

∀s ∈ [2] : ((is = js) ∧ (ks = ls))

∨ ((is = ks) ∧ (js = ls))

∨ ((is = ls) ∧ (ks = ls)) ,

(3.1)

and in which case zizjzkzl = 1. Let D be the set
of (i, j,k, l) that satisfy Eq. 3.1.

The expectation inequality follows in the stan-
dard way because z is 2-wise independent:

E [Υ] = E











∑

i∈[n]2

zivi





2





=

∑

i∈[n]2

v2
i .



Algorithm: ‖r − s‖ Approximation

1. Compute O(ǫ−2 log δ−1) independent one-dimensional sketches:

(a) Let x, y ∈R {−1, 1}n where the each vector is 4-wise independent

(b) Let t1 = t2 = t3 = 0

(c) On seeing the stream element ak = (i, j):

t1 ← t1 + xiyj , t2 ← t2 + xi, t3 ← t3 + yj .

Note that by the end of the stream:

t1
m

=
∑

i,j∈[n]

xiyjri,j ,
t2
m

=
∑

i∈[n]

xipi,
t3
m

=
∑

j∈[n]

yjqj .

(d) Let Υ = (t1/m− t2t3/m2)2

2. Group into O(log δ−1) groups of O(ǫ−2). Return the median of the mean of each group.

Figure 1: Single-Pass Approximation of ‖r − s‖

We can rewrite the second moment as follows:

E
[

Υ2
]

= E











∑

i∈[n]2

zivi





4






= E





∑

i,j,k,l∈[n]2

zizjzkzlvivjvkvl





=
∑

(i,j,k,l)∈D

vivjvkvl

We now note that,

D = {(i, j,k, l) : ∃a, b, c, d ∈ [n] :

{i, j,k, l} = {(a, b), (a, d), (b, c), (b, d))}} ,

i.e., the quadruples in D are (possibly degenerate)
rectangles. Because of this, we may associate a
two pairs to each element of D corresponding to
the both pairs of opposite corners. Furthermore,

2vivjvkvl ≤min{(vivj)
2 + (vkvl)

2,

(vivk)2 + (vjvl)
2, (vivl)

2 + (vjvk)2} .

Hence we may charge each quadruple in D to
two diagonal pairs such that each diagonal pair
is charged a total of 3 times its contribution. The
result follows since Var [Υ] ≤ E

[

Υ2
]

.

Constructing
∑

i,j∈[n] xiyjri,j is simple since

the pairs (i, j) arrive together. It turns out

the constructing
∑

i,j∈[n] xiyjpiqj is also simple
because a sketch of a product of distribution is
the product of sketches of the distributions.

Lemma 3.2. Consider x1, x2 ∈ {−1, 1}n and let

v1, v2 ∈ R
n. Then

(x1.v1)(x2.v2) =
∑

i∈[n]2

x1
i1x

2
i2v

1
i1v

2
i2 .

The algorithm is presented in Fig. 1 and the
proof of correctness is given in the next theorem.

Theorem 3.1. There exists a single-pass,

Õ(ǫ−2 log δ−1)-space (1+ ǫ, δ) approx. for ‖r− s‖.

Proof. By appealing to Lemma 3.1 and
Lemma 3.2, E [Υ] =

∑

i,j∈[n](ri,j − piqj)
2. By

Lemma 3.1 and the Chebychev bound, averaging
O(ǫ−2) independent Υ returns a (1 + ǫ, 1/4)-
approximation. Taking the median of O(log δ−1)
averages returns an (1 + ǫ, δ)-approximation as
desired.

It remains to be argued that the space require-
ment is as stated. This follows because there are
only O(ǫ−2 log δ−1) independent estimators and
each only requires O(log m + log n) space. The
4-wise independent vectors x and y can be con-
structed using standard techniques, e.g., via using
the parity check matrix of BCH codes [2].



3.2 Approximating ℓ1-independence: In
this section we use ideas from Indyk [24] to
design a small-space O(log n) multiplicative
approximation for |r− s|. Our approach is similar
to that used to estimate ‖r − s‖ in the previous
section but we face two new obstacles in the
composition of the appropriate sketches. First,
4-wise-independent vectors will not be sufficient
and we will need to resort to the machinery
of pseudo-random-generators (PGR). This will
introduce a subtle issue concerning the order in
which random bits are accessed. Secondly, since
there is no sketch of ℓ1 into small dimension ℓ1,
the sketches do not compose as easily as they did
with ℓ2. In particular, since the median operation
is not linear we will not be able to achieve a
(1 + ǫ, δ)-approx. in small space. Rather we will
be forced to use T -truncated-Cauchy distributed
vectors for the inner sketch and the usual Cauchy
distributed vectors for the outer sketch.

Definition 3.1. (T -truncated-Cauchy)
The Cauchy distribution has density function

π−1/(1+x2). Let T > 0, X ∼ Cauchy, and define

Y = −TI[X≤−T ] + XI[−T<X<T ] + TI[X≥T ]

where I[·] is the indicator function. We say Y ∼
T -truncated-Cauchy.

We now prove the necessary properties of the
T -truncated-Cauchy distribution.

Lemma 3.3. Let T = 100n and y ∈ R
n where

each coordinate yi ∼ T -truncated-Cauchy. Let

v1, . . . , vn ∈ R
n. Then for sufficiently large n,

Pr

[

1/100 ≤

∑

j |y.vj |
∑

j |v
j |
≤ 20 lnn

]

≥ 9/10

Proof. Consider an element yi of y. It can be
shown [24, Lemma 5] that,

E [|yi|] ≤ ln(T 2 + 1)/π + O(1) ,

and hence, for sufficiently large n,

E





∑

j∈[n]

|y.vj |



 ≤
∑

i,j∈[n]

E
[

|yiv
j
i |

]

≤
∑

j∈[n]

|vj | lnn

Therefore, by Markov’s inequality,

Pr





∑

j

|y.vj | ≥ 20 lnn
∑

j

|vj |



 ≤ 1/20 .

We now consider a lower bound for
∑

j∈[n] |y.vj |. If T was infinite then because
the Cauchy distribution is 1-stable, for any
j ∈ [n],

Pr

[

|y.vj | ≤
|vj |

100

]

=
1

π

∫ 1/100

−1/100

1

1 + x2
≤

1

100
.

However, the probability that there exists an i
such that |yi| = T is at most

2n

π

∫ −T

−∞

1

1 + x2
≤

2n

Tπ
≤ 1/100

for T = 100n. Therefore

Pr
[

|y.vj | ≤ |vj |/100
]

≤ 1/100 + 1/100 = 1/50 .

Then, by Markov’s inequality,

Pr





∑

j∈[n]

|y.vj | ≤
1

100

∑

j∈[n]

|vj |



 ≤ 1/20 .

The algorithm is presented in Fig. 2. The al-
gorithm is an “ideal” algorithm in the sense that
we assume access to random oracle and that com-
putation can done with infinite precision. The pre-
cision issues can be addressed as in [24]. However,
the argument used in [24] to show that pseudo-
random-generators can be used rather than a fully
random oracle needs to be slightly massaged for
our purposes. In [24], the argument first consid-
ered a sorted stream such that the necessary ran-
dom bits could be generated on the fly. Therefore
the algorithm used sufficiently little space that it
could be argued that only a few truly random bits
were required. Unfortunately, in general it is im-
possible to order (i, j) pairs such that all pairs (i, ·)
are consecutive and all pairs (·, j) are consecutive.

To argue that we can still use a PRG for both
x and y we proceed in two steps. First we consider
the pairs ordered by grouping together on the first
argument i. For a fixed i, we may use a truly
random xi and a pseudo-random y. Therefore,
we can perform the whole computation using bit-
by-bit access to truly random x, and sufficiently
small space including the PRG seed. Now we
repeat the argument on x to construct a small
space algorithm with no oracle assumptions.

Theorem 3.2. There exists a single-pass,

Õ(ln δ−1)-space, (O(ln n), δ)-approx. for |r − s|.



Approximation of |r − s|:

1. Repeat O(log δ−1) times:

(a) Let s = O(1) and T = 100n.

(b) Let x1, . . . , xs ∈ R
n where each xj

i ∼ Cauchy and is independent.

(c) Let y ∈ R
n where each yi ∼ T -truncated-Cauchy and is independent.

(d) Let tr1 = tr2 = 0 for r ∈ [s] and t3 = 0

(e) On seeing the stream element ak = (i, j):

tr1 ← tr1 + xr
i yj , tr2 ← tr2 + xr

i , t3 ← t3 + yj .

Note that by the end of the stream:

tr1
m

=
∑

i,j∈[n]

xr
i yjri,j ,

tr2
m

=
∑

i∈[n]

xr
i pi,

t3
m

=
∑

j∈[n]

yjqj .

(f) Let Υ = median(|(t11/m− t12t3/m2)2|, . . . , |(tn1/m− tn2 t3/m2)2|)

2. Return the median of the esimators.

Figure 2: Single-Pass Approximation of |r − s|

Proof. Let ui =
∑

j∈[n] yj(ri,j − piqj). By Lemma

3.3, Pr
[

1/100 ≤ |u|
|r−s| ≤ 20 lnn

]

≥ 9/10. Since

the elements of xr are p-stable,

|tr1/m− tr2t3/m| =

∣

∣

∣

∣

∣

∣

∑

i,j∈[n]

xr
i yj(ri,j − piqj)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈[n]

xr
i ui

∣

∣

∣

∣

∣

∣

∼ |u||X | ,

where X ∼ Cauchy. Hence, taking the me-
dian of O(1) estimators yields a (O(log n), 1/5)-
approximation of |u|. Repeating the process
O(log δ−1) times and taking the median yields a
(O(log n), δ)-approximation of |r − s| as required.

Other Algorithms: In the remainder of this sec-
tion we present two other approximation algo-
rithms with different accuracy guarantees and re-
source use. If a (1 + ǫ) multiplicative approxima-
tion is necessary then this is possible if we per-
mit significant increase in space. Specifically, with
Õ(ǫ−2n ln δ−1) space we can compute p and use
the normal ℓ1-sketch algorithm to (1 + ǫ, δ/n)-
approx |q − qi| where qi = (ri,1/pi, . . . , ri,n/pi).
Call this approximation Υi. Then

∑

i Υi is an
(1 + ǫ, δ)-approx. for |r − s|.

Theorem 3.3. There exists a single-pass,

Õ(ǫ−2n ln δ−1)-space (1 + ǫ, δ)-approx. for |r − s|.

Alternatively, there exists a two-pass algo-
rithm that returns an (ǫ, δ)-additive-approx while
only using Õ(ǫ−4 ln δ−1)-space. In the first pass
we take a set S of O(ǫ−2 log δ−1) samples from
q.In the second pass, for each sample i ∈ S we
(1 + ǫ, δ/|S|)-approx |q− qi|. By an application of
the Chernoff-bound, the mean of these estimates
yields a (1 + ǫ, δ)-additive-approx. for |r − s| be-
cause |r − s| = Ei∼p[|q − qi|] and |q − qi| ∈ [0, 2].

Theorem 3.4. There exists a 2-pass,

Õ(ǫ−4 ln δ−1)-space (ǫ, δ)-additive-approx. for

|r − s|.

3.3 Mutual Information Approximation:

Recall that the mutual information between two
random variables is defined as I(X ; Y ) = H(X)−
H(X |Y ) where H(X) = −

∑

i pi lg pi is the en-
tropy and H(X |Y ) = −

∑

i,j ri,j lg(ri,j/qj) is the
conditional entropy. In this section we show that
arbitrary precision multiplicative approximation
of the mutual information requires Ω(m) space.
However, arbitrarily small additive approximation
is possible in small space.

Lemma 3.4. There exists a one-pass



Õ(ǫ−2 log δ−1)-space (ǫ, δ)-additive approx of

the mutual information I(X ; Y ). Any single pass,

(5/4, 1/4)-approx of I(X ; Y ) requires Ω(n) space.

Proof. For the upper-bound we write

I(X ; Y ) = H(X) + H(Y )−H(X, Y )

and approximate each term up to ±ǫ/3 using [8].
For the lower-bound let (σ, j) ∈ F

n−1
2 × [n] be

an instance of Index where
∑

i σi = (n − 1)/2.
Let SA = {(1, i), (2, i) : σi = 1, i ∈ [n − 1]} and
SB = {(1, j), (2, n)}. Note that H(X) = 1 and

H(X |Y ) = (1 − qj − qn)H(1/2, 1/2) +

σjqjH(2/3, 1/3)

=
n− 1− 2σj + 3σjH(2/3, 1/3)

n + 1
.

Therefore,

I(X ; Y ) =
1

n + 1

{

2 if σj = 0
4− 3H(2/3, 1/3) if σj = 1

and hence, approximating I(X ; Y ) by a factor at
most

√

2/(4− 3H(2/3, 1/3)) ≥ 1.25 determines
the value of σi.

A similar result holds for approximating the
conditional entropy.

Lemma 3.5. There exists a one-pass

Õ(ǫ−2 log δ−1)-space (ǫ, δ)-additive approx of

H(X |Y ). Any constant pass, (α, 1/4)-approx of

H(X |Y ) requires Ω(n) space for any constant

α > 1.

Proof. For the upper-bound we write

H(X |Y ) = H(X, Y )−H(Y )

and approximate each term upto ±ǫ/2 using [8].
For the lower bound, let (σ, ρ) be an instance of
disjointness with weight of σ and ρ being n/4.
SA = {(1, i) : σi = 1} and SB = {(2, i) : ρi = 1}.
Then H(X |Y ) = 0 is σ.ρ = 0 and H(X |Y ) = 4/n
if σ.ρ = 1.

4 Distributed Correlation

Consider a stream S = 〈a1, . . . , a2m〉 where ak ∈
[n]× [m]×{1, 2} and, for each i ∈ [m] there exists
exactly one item of the form (·, i, 1) and exactly
one item of the form (·, i, 2). Define bi = (j, k)
if (j, i, 1), (k, i, 2) ∈ S. Define the distributions

r, p, q, r analogous to the definition in the previous
section.

It turns out that estimating correlation in
this model is hard even in the binary case (i.e.,
n = 2.) Note that there is natural connection
to computing Hamming distances [29, 26, 13]:
Consider p = (1/2, 1/2), q = (1/2, 1/2) and let
d = |{k : bk = (i, j), i 6= j}|. Then,

|r − s| =
1

m

(∣

∣

∣

∣

d

2
−

m

4

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

d

2
−

m

4

∣

∣

∣

∣

+

∣

∣

∣

∣

d

2
−

m

4

∣

∣

∣

∣

)

= |2d/m− 1|

Lemma 4.1. For n = 2: any constant pass al-

gorithm determining if X and Y are indepen-

dent requires Ω(m) space but an (ǫ, δ)-additive-
approx. to |r − s| is possible in O(ǫ−2 log δ−1)
space. More generally, an (ǫ, δ)-additive-approx. is

possible with O(n2ǫ−2 log nδ−1) space.

Proof. For the lower-bound let (σ, ρ) ∈ F
n
2 ×F

n
2 be

an instance of Disjointness.

SA = {(0, 4i + 1, 1), (σi, 4i + 2, 1),

(σ̄i, 4i + 3, 1), (1, 4i + 4, 1) : i ∈ [m]}

SB = {(ρ̄i, 4i + 1, 2), (ρi, 4i + 2, 2),

(0, 4i + 3, 2), (1, 4i + 4, 2) : i ∈ [m]}

Note that p = (1/2, 1/2) and q = (1/2, 1/2).
Therefore, |r− s| = |d/(2m)−1|. Since d = 2m iff
ρ.σ = 0 the lower-bound follows.

For the upper-bound, let S be a set of
O(n2ǫ−2 log nδ−1) values from [m] chosen at ran-
dom (with replacement). As the stream arrives
compute pi and qi for all i, j ∈ [n] and

r̃i,j = |{ak = (i, j) : k ∈ |S|}|/|S| .

Then, by an application of the Chernoff-bound
and the union bound, |r̃ − r| ≤ ǫ with probability
at least 1− δ. Hence |s− r̃| = |s− r| ± ǫ.

5 Conclusions and Open Problems

We presented a range of algorithms for approxi-
mating the degree of correlation between two ran-
dom variables defined empirically by a stream.

An obvious open question is to improve the
approximation of the ℓ1 distance between the joint
distribution and the product distribution. Is a
one-pass (1+ ǫ, δ)-approximation possible in poly-
logarithmic space? More generally, extending the
algorithms to test for k-wise independence would



be interesting. Another related problem that de-
serves attention is the problem of identifying pairs
of random variables whose “correlation” (accord-
ing to some measure) exceeds some threshold.

Acknowledgments: The second author would
like to thank Graham Cormode for helpful con-
versations.
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