
A PROBLEM IN SCHEDULING: YOUR TIME STARTS NOW. . .

Andrew McGregor
University of Pennsylvania
andrewm@cis.upenn.edu

Abstract

We consider a scenario in which we wish to compute a good schedule of jobs using the same
machine upon which we will process the scheduled jobs. The jobs to be processed are suffi-
ciently short that the time spent processing a job is comparable to the time spent scheduling that
job. We consequently have an interesting trade-off between how much time we should spend
thinkingabout making our job schedule good (with respect to a given measure) and how much
time we should spenddoing(or processing) our jobs.

0. Introduction

In a widely circulated puzzle (see [3] for the earliest reference known by the author),
the four members of the rock group U2 are late for a concert whose venue lies on
the other side of a rickety bridge. All four men begin on the same side of the bridge.
You must help them across to the other side. It is night. There is one flashlight. A
maximum of two people can cross at one time. Any party who crosses, either 1 or
2 people, must carry the flashlight with them. The flashlight must be walked back
and forth; it cannot be thrown, etc. Each band member walks at a different speed.
A pair must walk together at the rate of the slower man’s pace: the singer takes one
minute to cross, the guitarist takes two minutes, the bass player takes five minutes and
the drummer takes ten minutes. (One can only assume that they are carrying their
instruments.) What is the minimum time taken for a sequence of bridge crossings that
takes all band members to the other side of the bridge?

Anecdotal evidence suggests that, when attempting this problem most people see
a 19 minute solution almost instantaneously but then take more than 2 minutes finding
the optimal solution of 17 minutes.1 This raises the question that, had the problem

1In the unlikely event that the reader is unfamiliar with the schedule that realizes the 17 minute solution,
it is left as a potential diversion from reading this paper.



FUN with Algorithms

solver been there on the fateful night in question, how useful would he have been had
he simply focussed on finding the optimal solution?

This phenomena, that of spending too longthinking and not enough timedoing,
carries across to computer science in numerous ways2. In this paper we look at a
scheduling problem (see [2, 4] for comprehensive surveys of the large field of schedul-
ing theory) whose jobs are sufficiently short that we are forced to consider time spent
finding schedules on the same scale as time spent processing jobs that we’ve sched-
uled. In this problem, the concern that we spend excessive time thinking and not doing,
will be abundantly clear. Such a scheduling problem could quite plausibly arise in a
micro-architectural context.

1. The Problem

Consider the following familar scheduling scenario: You have available a single ma-
chine for the nextT seconds. There is a set of jobsJ = {j1, . . . jn} you are consid-
ering running. Each jobji has a release timeri, lengthli and payoffwi. We receive
the payoff for a job iff we start the job afterri and complete it before timeT . We seek
a subset of jobs that we can feasibly schedule to yield the greatest payoff. It can be
proven that we may assume w.l.o.g. that our machine is nonpreemptive.

This is a well understood scheduling problem for which there exists at least two
pseudo-polynomial algorithms (running timeO(n

∑
li) or O(n

∑
wi)) as well as a

PTAS (running timeO(n4/ε)). (See [1] for details.) However, implicit in all these
scheduling algorithms is the assumption that either the schedule is computed prior to
theT seconds during which we can schedule jobs or else the time spent computing the
schedule is incomparably small compared to the lengths of the jobs being scheduled.
We make no such assumption. Furthermore we will compute the schedule using the
same machine upon which we will process the scheduled jobs.

We compute forT1 seconds and then schedule jobs for the remainingT2 = T −T1

seconds. We will compare our solution’s payoff to the payoff of the optimum schedule
of jobs in [0, T ]. Note that this may seem a little unfair as we are in effect allowing
the optimum algorithm to pre-compute the schedule before the time interval whereas
our algorithm has to compute its solution during the[0, T ]. This can give the optimum
an arbitrarily large advantage: supposeJ consists of one very profitable lengthT job
released at time 0 and a collection of other very low profit jobs. We wouldn’t be able
to schedule the highly profitable job since even the slightest fraction of a second spent
identifying this large job would mean it no longer fitted in the remaining available

2Least of which is the perceived wisdom that the computer itself is simply a machine on which the user
spends hours saving time.

2



A Problem in Scheduling: Your Time Starts Now. . .

time. To ameliorate the situation, as a conciliatory gesture to algorithms that don’t get
to pre-compute, we assume that the length of the longest job in the optimal solution,
l∗, is small compared toT , i.e. l∗ ≤ T/k for somek > 2.

2. A Solution

Assumer1 ≤ r2 ≤ . . . rn, i.e. the jobs are given to us in order of increasing release
time. We choose to primarily calculate our schedule via a dynamic program similar to
one given in [1]. Let

D[i, t] = Optimal feasible schedule for time interval[T − t, T ]
using jobs{i, i + 1, . . . n}

and, for ease of notation, letD(t) = D[1, t]. The dynamic programming table can be
computed using the following recurrence

D[i, t] = max{D[i + 1, t], D[i + 1,min{T − ri, t} − li] + wi} (1)

whereD[·, t] = −∞ for t < 0. Let DS [i, t] be the schedule that achieves pay-
off D[i, t]. The recurrence follows from the fact that the optimum schedule can be
achieved with scheduled jobs being processed in the ascending order of release times.
This can be verified using an interchange argument.

We wish to quantify in seconds the running time of this algorithm so, to this end,
we assume that calculatingD[i, t] from D[i + 1, t] andD[i + 1,min{T − ri, t} − li]
using equation (1) takest1/n seconds for some constantt1. (We considert1 as part
of the input to the problem.) Hence to compute the optimal schedule for the lastT2

seconds,D[1, T2] can be computed in timet1T2 using the recurrence in equation (1).
Before we go any further we establish the following bound on the progress (in

terms of payoff) of the dynamic program.

Lemma 1
D(t)
D(T )

≥ t

T

t− l∗

t

Proof: Consider the optimum scheduleJ∗ = {j∗1 , j∗2 , . . . } where each scheduled
job j∗i is started at timesi and ends at timeei. Recall that of the jobs scheduled in
the optimum schedule, they are processed in order of increasing release times. We
partition the time interval[0, T ] into the following intervals

L0 = [l0, T ] wherel0 = min{T − t,min{sk : ek > T − t}}

3



FUN with Algorithms

Li = [li, li−1] whereli = min{T − li−1 − t,min{sk : ek > T − li−1 − t}}

Now since|Li| ≥ t for all i we have partitioned[0, T ] into at mostT/t intervals. We
now argue that in each interval the total weight of jobs scheduled is at mostD(t) t

t−l∗ .
Consider the set of jobs inLi. We remove jobs fromLi in order of increasing weight
to length ratios until all jobs can feasibly be scheduled in the interval[li−1 − t, li−1].
This has decreased the weight of the jobs scheduled inLi by at most a fractiont−l∗

t .
But the resulting set of jobs can be scheduled in time[T − t, T ] and hence

t− l∗

t
(Weight of jobs scheduled inLi) ≤ D(t)

and soD(T ) ≤ T
t D(t) t

t−l∗ as required. �
Using the proposed dynamic program, the more time we spend computing, the

greater the interval[T −T2, T ] we have scheduled. One might be tempted to compute
until we have optimally scheduled[0, T ] and find what the optimal schedule would be.
But this would be entirely academic as we would no longer be able to implement this
schedule as a consequence of all the time we’ve spent finding the schedule. Hence,
when we’ve spentT1 time computing, it doesn’t make any sense to schedule for more
than[T1, T ]. This is the first observation to ensure that we don’t waste time computing.

Conversely why would we want to stop computing at timeT1 if at this time we’ve
only scheduled[T −T2, T ] andT1 +T2 < T? If we did, we’d have scheduled nothing
betweenT1 andT −T2 and the machine would be idle, waiting for our first scheduled
job to start. Hence, we may as well continue computing optimal schedules for the
increasing interval at the end of theT seconds. In summary, in lieu of any other ideas
the scheduler should just systematically and optimally build up its dynamic program
table up until the point when it has no time to do anything other than implement it’s
best schedule so far computed. We refer to this scheduling algorithm as the “Wisely
and Slow” algorithm.

Let T ∗1 be the optimum length of time to spend computing. In light of the above
discussionT ∗1 = T

1+1/t1
and we construct an optimal schedule for[T ∗2 , T ] where

T ∗2 = T
t1+1 . Appealing to Lemma 1 gives us the following bound on the performance

of this algorithm.

Theorem 1 Using the Wisely and Slow Algorithm we achieve the following approxi-
mation to the best schedule of[0, T ].

1
t1 + 1

(
1− t1 + 1

k

)

4



A Problem in Scheduling: Your Time Starts Now. . .

3. A Better Solution

Consider the situation in which we have spent 20 seconds scheduling the final 40
seconds of our allotted 100 seconds for which we have our machine. (Heret1 = 0.5.)
The previous algorithm would continue scheduling another 26 seconds such that we
end up getting the best payoff that is possible by scheduling jobs in the last 66 seconds.
But what if there were a quick and dirty (not necessarily optimal) way to augment the
existing schedules for the final 40 seconds to creat a schedule for the last 80 seconds?
It may be the case that running jobs according to a quick and dirty schedule for 80
seconds is better than running an optimal schedule of jobs for 66 seconds. The benefit
of a quick and dirty augmentation is the essence of the better solution we present in
this section.

For this solution, instead of computing forT1 seconds such thatT1 + T2 = T we
stop computing whenT1 + T2 = T − l∗− t1 (recall thatl∗ is the length of the longest
job). At this point, for alli ∈ [n] we compute

E[i, T2] = max{E[i + 1], D[i + 1, A] + wi}

whereT − A = T − min{T2, T − max{ri, T − l∗ − T2} − li} is the earliest time
at which we can schedule a job afterji given thatji is scheduled and starts after time
max{ri, T − l∗ − T2}.

Note that the computation ofE(T2) = E[1, T2] requires the same amount of time
as computing a column ofD[·, ·], i.e. aboutt1 seconds. Hence, by timeT − T2 − l∗

we have computedE(T2) and in the remainingT2 + l∗ seconds we still have time to
implement this schedule.

The following lemma gives us a bound onE(T2).

Lemma 2
E(T2)
D(T )

≥ T2

T

Proof: Consider the optimum scheduleJ∗ = {j∗1 , j∗2 , . . . } where each scheduled
job j∗i is started at timesi and ends at timeei. Consider an interval of timeL =
[ei − T2, ei] for somei. Let the jobs processed by the optimum in this interval be
j∗α, j∗β , j∗γ . . . j∗i . Note that at most one of these jobs,j∗α, is not entirely processed in
the interval. Consider the total weight of these jobsW = wα + wβ + wγ + . . . wi. In
order to prove the lemma we argue thatE(T2) ≥ W and thenE(T2) ≥ D(T )T2/T
follows.

Note thatlβ + lγ + . . . + li ≤ T2 since ifj∗β , j∗γ . . . j∗i can all be scheduled in their
entirety within an interval of lengthT2. Sincelα ≤ l∗ we also havelα + lβ + lγ +

5



FUN with Algorithms

. . . + li ≤ l∗ + T2. Lastly lα + lβ + lγ + . . . + li ≤ T − rα since ifj∗α, j∗β , j∗γ . . . , j∗i
are all simultaneously schedulable, they are schedulable in the interval[rα, T ]. Hence

lβ + lγ + . . . + li ≤ min{T2, T −max{rα, T − l∗ − T2} − lα}

Therefore

E(T2) ≥ E[α, T2]

= max
{

E[α + 1],
D[α + 1,min{T2, T −max{rα, T − l∗ − T2} − lα}] + wα

}
≥ D[α + 1,min{T2, T −max{rα, T − l∗ − T2} − lα}] + wα

≥ wα + wβ + wγ + . . . + wi = W

�
This leads us to an algorithm where in the firstT−l∗−t1

1+1/t1
seconds we patiently build

up the dynamic programming table schedules for[T − T−l∗−t1
1+t1

, T ]. Then in the next
t1 seconds we make a greedy choice of one more job to schedule. We call this the
“Impetuous” scheduling algorithm (although to its credit, it is patient and methodical
up until the lastt1 seconds.) Applying the result from the above lemma gives the
following theorem.

Theorem 2 Using the Impetuous Algorithm we achieve the following approximation
to the best schedule of[0, T ].

1
t1 + 1

(
1− 1

k
− t1

T

)

4. Conclusions and Further Work

We have formulated a scheduling problem in which the phenomena of trading-off
thinking with doing is made manifest to the algorithm designer. Various common
sense principles are brought to bear upon the problem including those of “not wasting
your time with things of only academic interest”, “not sitting idle when there are jobs
to be done” and “being greedy when there’s no time to regret it isn’t all that bad.” In
light of these principles two algorithms are presented that approximate the optimum
schedule in our problem.

An interesting variant of the problem discussed would allow processing on two
machines. An important concern in this scenario would be the waste of letting one

6



A Problem in Scheduling: Your Time Starts Now. . .

machine idle while the other machine computes schedules. (We would assume that
parallel computation of the schedules is unfeasible.) The question then is how to put
the first machine to work while we are scheduling on the second. The difficulty lies in
the fact that identifying optimum jobs to process on the first machine in this interval
would likely require knowledge of the schedule we are in the process of computing on
the second machine.

Consider the following example: We wish to schedule the cooking of a large meal
with the goal of cooking the “best” selection of component dishes subject to the con-
straint that we finish the preparation within an hour. We may now have precedence
constraints in addition to release times of the jobs, e.g. the time by which the chicken
will have thawed. As above, we have the trade-off between the optimality of the
schedule we think up and the length of time we spend thinking it up. In the interest of
not wasting as much time while thinking, we maymulti-taskand boil some water (the
cooker is machine 1) while thinking about what to cook (using machine 2, the cook’s
brain) even though we have not necessarily yet determined we need boiled water and
aren’t better utilizing the cooker by putting on the sprouts. What are the principles
that governed the choice of boiling water over sprout cooking?

Finally, the reader is cautioned about spending too long trying to solve these prob-
lems. A particularly wise wizard of Middle Earth once said “All you have to do is
decide what to do with the time given to you.” The reader has to decide whether the
above problems merit their thought in the time given to them. However, in light of the
above discussion, it is best not to spendtoo long making this decision.

Acknowledgments

Thanks to Sampath Kannan for some helpful discussions and numerous friends who
would calculateD[1, T ], for inspiration.

References

[1] D. Karger, C. Stein, and J. WeinScheduling Algorithms.Chapter in CRC Handbook on
Algorithms. CRC Press, 1998.

[2] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys.Sequencing and
scheduling: algorithms and complexity.In S.C. Graves, A.H.G. Rinnooy Kan, and P.H.
Zipkin, editors, Handbooks in Operations Research and Management Science, volume
4. Elsevier, Amsterdam, 1993

[3] S. Levmore, and E. Cook. Super Strategies For Puzzles and Games. Doubleday &
Company, Inc, Garden City, New York 1981

[4] M. Pinedo.Scheduling: Theory, Algorithms and Systems.Prentice Hall, 1997.

7


