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Today's Result

Theorem
There's a O(e~*n polylog n)-space algorithm, using O(¢~3log n) passes
that 1 + € approximates max cardinality matching in bipartite graphs.

The results follows from the following lemma by trying values
a=1,(1+¢),(1+¢)?...nin parallel.

Lemma

There's a O(e~3 log n)-pass, O(e~*n polylog n)-space algorithm that
given value « either:

. . o a
1. Finds a matching of size 17-

2. Or determines the maximum matching has size at most a1 + 2¢).




|deas behind algorithm: Fractional Matchings

Fact
For any graph, the size of max fractional matching equals for the size of

the min fractional vertex cover, i.e.,

max Zy,-j:z;/,-jglwev —min{Zx,-:x,-—f—xj>1V(i,j)€E

(ij)eE  jer( eV

For a bipartite graph, this also equals the size of max (integral) matching.




|deas behind algorithm: Multiplicative Weights

> y is a fractional matching if for all i € V, M;(y) < 0 where

Mi(y) Z yvi|—1.

JET (i)

Rather than trying to satisfy all n constraints, it's easier to satisfy
them “on average’, i.e., given a distribution u over [n] find y with

ZM;M/(Y) <0.

The algorithm defines sequence of distributions pit, pi2, 13, ..., "

and finds a set of weights y*, y?, ...,y for each.
If M;(y?) > 0 then pt*! increases weight on that constraint such
that average of y!,...,y" nearly satisfies all constraints.




Algorithm and Analysis

1. Define ul =1/nand u} =1forallie V
2. Fort=1to T:
2.1 Construct y': Let x; = au! and find maximal matching S in

{(i,j) e E:xi +x <1}
If |S] < da output “Fail” and otherwise define
yi = a/|S]| for each (i, ) € S and 0 otherwise.

2.2 Define p™: uf™ = uf(1 + eSMi(y?)) and pi™t = Vie V.

E t+1

3. Output ﬁztyt/T.

Lemma
If fail, max fractional matching is < (1 + 2§)a. Otherwise, y* satisfies:

S uM(y) <0 Y ye=a —1<M(y')<1/5 VieV

iev ecE

Theorem
Output is fractional matching size o/(1 + 4¢) if T = O(e 3logn), § = e.
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Proof of Lemma

» If we fail, for each i that is an endpoint of an edge in S, consider
adding 1 to each x;. Then gives a fractional vertex cover of size

Zauf+2|5| < a+ 2

and hence that max fractional matching has size < a(1 + 29).
» To prove y' satisfies constraints on average

in Z Yi— le Z Yij— ZX: ZYij(XH'Xj)—OZ < a—«o

iev JEr(i) iev  jer( jEE

where last inequality follows since, x; + x; < 1 for (i,j) € S.
» To prove size of y! is a,

D_ye=> aflS|=a
ecE eeS
» To prove upper and lower bounds on M;(y?"),

1<) yh-1<a/|S|<1/6.

Jer(i)

6/8



Proof of Theorem
> >, uf decreases as t increases:
ZUH'I Z (1+deMi(y Zu +5EZU, i 7Zu,-t

» Use this to bound v/

n> Y ul > u = T+ deMi(y)
i te[T]

> After some algebra and using fact —1 < M;(y*) < 1/6:

Inn>(e—e)5 > Mi(y") —2To

te[T]

> Finally, settingy =>_,y"/T and T = '(;”27 gives,
Mi(yt) _Inn+2eT6
i — 1= M,‘ = < <4
Z Yij () Z T = Té(e—e?) — ¢
Jer) te[T]
and therefore y' = y /(1 + 4e) satisfies 3, (;) v < 1 for all i € [n].
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Missing Algebra for Proof of Theorem

(I+e)* ifo<x<1

we get:
(1—€)™ if —1<x<0 &

> Using1+ex>{

n> T (@+0eMi(yt)) > (1) Semonzo MO (1) =0 Seamrco M)
te[T]

» Taking logs of both sides gives:

Inn > In(l+e) > oM )—In(l—c) Y IMi(y*)

t:Mi(yt)>0 t:Mi(yt)<0

(e — €%) Z SMi(y?) + (e + €2) Z SM;i(y")
t:M;(yt)>0 t:M;(yt)<0
= (e—é?) Z SMi(y*) + 2€2 Z SM;i(y")
te[T] t:M;(yt)<0
(e — €2) Z SM;(y*) — 26 T$

te[T]




