CMPSCI 711: More Advanced Algorithms

Graphs 7: Multi-Pass Matchings via Multiplicative Weights

Andrew McGregor

ightharpoonup A $(1+\epsilon)$ approx for max cardinality matching in bipartite graphs.

[Ahn, Guha ICALP 11]

Last Compiled: February 19, 2018

Today's Result

Theorem

There's a $O(\epsilon^{-4} n \operatorname{polylog} n)$ -space algorithm, using $O(\epsilon^{-3} \log n)$ passes that $1 + \epsilon$ approximates max cardinality matching in bipartite graphs.

The results follows from the following lemma by trying values $\alpha=1,(1+\epsilon),(1+\epsilon)^2\dots n$ in parallel.

Lemma

There's a $O(\epsilon^{-3} \log n)$ -pass, $O(\epsilon^{-4} n \operatorname{polylog} n)$ -space algorithm that given value α either:

- 1. Finds a matching of size $\frac{\alpha}{1+4\epsilon}$
- 2. Or determines the maximum matching has size at most $\alpha(1+2\epsilon)$.

Ideas behind algorithm: Fractional Matchings

Fact

For any graph, the size of max fractional matching equals for the size of the min fractional vertex cover, i.e.,

$$\max \left\{ \sum_{(i,j) \in E} y_{ij} : \sum_{j \in \Gamma(i)} y_{ij} \le 1 \ \forall i \in V \right\} = \min \left\{ \sum_{i \in V} x_i : x_i + x_j \ge 1 \ \forall (i,j) \in E \right\}$$

For a bipartite graph, this also equals the size of max (integral) matching.

Ideas behind algorithm: Multiplicative Weights

▶ y is a fractional matching if for all $i \in V$, $M_i(y) \leq 0$ where

$$M_i(y) = \left(\sum_{j \in \Gamma(i)} y_{ij}\right) - 1$$
.

▶ Rather than trying to satisfy all n constraints, it's easier to satisfy them "on average", i.e., given a distribution μ over [n] find y with

$$\sum_i \mu_i M_i(y) \leq 0 .$$

- ► The algorithm defines sequence of distributions $\mu^1, \mu^2, \mu^3, \dots, \mu^T$ and finds a set of weights y^1, y^2, \dots, y^T for each.
- ▶ If $M_i(y^t) > 0$ then μ^{t+1} increases weight on that constraint such that average of y^1, \dots, y^T nearly satisfies all constraints.

Algorithm and Analysis

- 1. Define $\mu_i^1 = 1/n$ and $u_i^1 = 1$ for all $i \in V$
- 2. For t = 1 to T:
 - 2.1 Construct y^t : Let $x_i = \alpha \mu_i^t$ and find maximal matching S in

$$\{(i,j) \in E : x_i + x_j < 1\}$$

If $|S| < \delta \alpha$ output "Fail" and otherwise define

$$y_{ii}^t = \alpha/|S|$$
 for each $(i, j) \in S$ and 0 otherwise.

- 2.2 **Define** μ^{t+1} : $u_i^{t+1} = u_i^t (1 + \epsilon \delta M_i(y^t))$ and $\mu_i^{t+1} = \frac{u_i^{t+1}}{\sum_i u_i^{t+1}} \ \forall i \in V$.
- 3. Output $\frac{1}{1+4c}\sum_{t} y^{t}/T$.

Lemma

If fail, max fractional matching is $<(1+2\delta)\alpha$. Otherwise, y^t satisfies:

$$\sum_{i \in V} \mu_i M_i(y^t) \leq 0 \qquad \sum_{e \in F} y_e = \alpha \qquad -1 \leq M_i(y^t) \leq 1/\delta \ \forall i \in V$$

Theorem

Output is fractional matching size $\alpha/(1+4\epsilon)$ if $T=O(\epsilon^{-3}\log n)$, $\delta=\epsilon$.

Proof of Lemma

▶ If we fail, for each i that is an endpoint of an edge in S, consider adding 1 to each x_i . Then gives a fractional vertex cover of size

$$\sum_{i} \alpha \mu_{i}^{t} + 2|S| < \alpha + 2\delta\alpha$$

and hence that max fractional matching has size $< \alpha(1+2\delta)$.

▶ To prove y^t satisfies constraints on average

$$\sum_{i \in V} x_i \left(\sum_{j \in \Gamma(i)} y_{ij} - 1 \right) = \sum_{i \in V} x_i \sum_{j \in \Gamma(i)} y_{ij} - \sum_i x_i = \sum_{ij \in E} y_{ij} (x_i + x_j) - \alpha < \alpha - \alpha$$

where last inequality follows since, $x_i + x_j < 1$ for $(i, j) \in S$.

▶ To prove size of y^t is α ,

$$\sum_{e \in E} y_e = \sum_{e \in S} \alpha / |S| = \alpha$$

▶ To prove upper and lower bounds on $M_i(y^t)$,

$$-1 \leq \sum_{i \in \Gamma(i)} y_{ij}^t - 1 < \alpha/|S| \leq 1/\delta.$$

Proof of Theorem

 $ightharpoonup \sum_i u_i^t$ decreases as t increases:

$$\sum_{i} u_i^{t+1} = \sum_{i} u_i^t (1 + \delta \epsilon M_i(y^t)) = \sum_{i} u_i^t + \delta \epsilon \sum_{i} u_i M_i(y^t) \leq \sum_{i} u_i^t$$

▶ Use this to bound u_i^{T+1} :

$$n \geq \sum_{i} u_i^{T+1} \geq u_i^{T+1} = \prod_{t \in [T]} (1 + \delta \epsilon M_i(y^t))$$

▶ After some algebra and using fact $-1 \le M_i(y^t) \le 1/\delta$:

$$\ln n \ge (\epsilon - \epsilon^2) \delta \sum_{t \in [T]} M_i(y^t) - 2\epsilon^2 T \delta$$

▶ Finally, setting $y = \sum_t y^t / T$ and $T = \frac{\ln n}{\delta \epsilon^2}$ gives,

$$\sum_{j \in \Gamma(i)} y_{ij} - 1 = M_i(y) = \sum_{t \in [T]} \frac{M_i(y^t)}{T} \le \frac{\ln n + 2\epsilon^2 T\delta}{T\delta(\epsilon - \epsilon^2)} \le 4\epsilon$$

and therefore $y' = y/(1+4\epsilon)$ satisfies $\sum_{j \in \Gamma(i)} y'_{ij} \le 1$ for all $i \in [n]$.

Missing Algebra for Proof of Theorem

▶ Using $1 + \epsilon x \ge \begin{cases} (1 + \epsilon)^x & \text{if } 0 \le x \le 1 \\ (1 - \epsilon)^{-x} & \text{if } -1 \le x \le 0 \end{cases}$ we get:

$$n \geq \prod_{t \in [T]} (1 + \delta \epsilon M_i(y^t)) \geq (1 + \epsilon)^{\delta \sum_{t:M_i(y^t) > 0} M_i(y^t)} (1 - \epsilon)^{-\delta \sum_{t:M_i(y^t) < 0} M_i(y^t)}$$

► Taking logs of both sides gives:

$$\begin{split} \ln n & \geq & \ln(1+\epsilon) \sum_{t:M_i(y^t)>0} \delta M_i(y^t) - \ln(1-\epsilon) \sum_{t:M_i(y^t)<0} \delta M_i(y^t) \\ & \geq & (\epsilon-\epsilon^2) \sum_{t:M_i(y^t)>0} \delta M_i(y^t) + (\epsilon+\epsilon^2) \sum_{t:M_i(y^t)<0} \delta M_i(y^t) \\ & = & (\epsilon-\epsilon^2) \sum_{t\in[T]} \delta M_i(y^t) + 2\epsilon^2 \sum_{t:M_i(y^t)<0} \delta M_i(y^t) \\ & \geq & (\epsilon-\epsilon^2) \sum_{t\in[T]} \delta M_i(y^t) - 2\epsilon^2 T \delta \end{split}$$