Motivating Problem

Problem: There are n machines and each has the row of an adjacency matrix of a graph with n nodes. A single message is communicated from each machine to a central machine. How many bits do these messages need to be such that the central machine can determine whether the graph is connected?

Answer: $O(\text{polylog } n)$ bits suffice such that the connectivity can be determined with high probability.

Corollary: $O(n \text{ polylog } n)$ bits suffice to determine whether a graph defined by a stream of edge insertions/deletions is connected.
First Ingredient: Sketching for ℓ_0 Sampling

Lemma
There exists random matrix $A \in \mathbb{R}^{O(\log^2 N) \times N}$ such that for any $x \in \mathbb{R}^N$, with probability at least $1 - 1/poly(n)$, we can learn (i, x_i) for some $x_i \neq 0$ from Ax.

Useful properties:

- **Union Bound**: Suppose we have multiple vectors x_1, x_2, \ldots, x_t, then we can determine a non-zero element from everyone of them from Ax_1, Ax_2, \ldots, Ax_t with probability at least $1 - \delta t$.

- **Linearity**: Given Ax and Ay, we can find a non-zero entry from $z = x + y$ since

$$Az = A(x + y) = Ax + Ay$$
Consider the following (non-streaming) algorithm for connectivity:

- For each node, select an incident edge.
- For each connected component, select an incident edge.
- Repeat above line until process terminates.

Analysis:

- There are at most \(\log n \) rounds since in each round, the size of every connected component either stops growing or doubles size.
- The set of all edges selected includes a spanning forest of the graph.
Third Ingredient: Signed Vertex-Edge Vectors

With each vertex i of the graph, associate a length $\binom{n}{2}$ vector that is indexed by pairs on nodes. The only non-zero entries correspond to incident edges $\{i,j\} \in E$ and this entry is 1 if $j > i$ and $−1$ if $j < i$. E.g.,

\[
\begin{align*}
 x_1 &= (1, 1, 0, 0, 0, 0, 0, 0, 0, 0) \\
 x_2 &= (-1, 0, 0, 0, 1, 0, 0, 0, 0, 0) \\
 x_3 &= (0, -1, 0, 0, -1, 0, 0, 1, 0, 0) \\
 x_4 &= (0, 0, 0, 0, 0, 0, 0, 0, -1, 0) \\
 x_5 &= (0, 0, 0, 0, 0, 0, 0, 0, 0, -1)
\end{align*}
\]

corresponds to a graph with edges $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{3,4\}$, and $\{4,5\}$.

Lemma

Non-zero entries of $\sum_{i \in S} a_i$ correspond to edges between S and $V \setminus S$.

Proof.

{\(j, k\)}th entry of $\sum_{i \in S} a_i$ equals 0 iff $j, k \in S$ or $j, k \not\in S$. \qed
What players send: Player with node i sends $A_1 x_i, A_2 x_i, \ldots, A_{\log n} x_i$ where A_1, A_2, \ldots are independent random matrices for ℓ_0 sampling.

Central player emulates Boruvka’s algorithm:
- Can identify an incident edge from each node i using $A_1 x_i$ since can find a non-zero entry of x_i and such entries of x_i are incident edges.
- In round t, suppose we need to find an incident edge from a connected component S. Then, we can such an edge since

$$\sum_{i \in S} A_t x_i = A_t \sum_{i \in S} x_i$$

and we can therefore identify of non-zero elements of $\sum_{i \in S} x_i$ which gives a suitable edge.
Let \(S_0, S_1, \ldots, S_{\log N} \) be random subsets of \([N]\) where each element is in \(S_i \) with probability \(1/2^i \).

To sketch the vector \(x \), for each \(S \in \{ S_0, S_1, \ldots, S_{\log N} \} \) compute:

\[
\begin{align*}
a &= \sum_{j \in S} jx_j, \\
b &= \sum_{j \in S} x_j, \\
c &= \sum_{j \in S} x_j r^j \mod p
\end{align*}
\]

where \(r \) is a random value in range \(1, \ldots, p - 1 \) and \(p = \text{poly}(N) \).

We say \(S \) passes the test if \(a/b \in [N] \) and \(c = br^{a/b} \mod p \).

- If all \(S \) do not pass the test, output “fail”
- Otherwise, pick a passing \(S \). Claim that \((a/b)\)th entry of \(x \) is \(b > 0 \)
Analysis: Part 1

Lemma
Let $A = \{i \in N : x_i \neq 0\}$ be the positions of non-zero entries.
- If $|A \cap S| = 1$, then S passes the test and $x_{a/b} = b$.
- If $|A \cap S| \neq 1$, then S doesn’t pass the test with high probability.

Proof.
- If $A \cap S = \{j\}$ then $a = jx_j$, $b = x_j$, and $c = bz_j \mod p$.
- If $|A \cap S| > 1$ then

$$f(z) = \sum_{j \in S} x_jz^j - bz^{a/b} \mod p$$

is a non-zero polynomial of degree at most N. Hence, it evaluates to 0 at a random r with probability at most $N/(p-1) < 1/\text{poly}(N)$.

\[\square\]
Analysis: Part 2

Lemma
\[\mathbb{P}[|A \cap S| = 1] \geq 1/8 \text{ for some } S. \]

Proof.
Picking \(i \) such that \(2^{i-2} \leq |A| < 2^{i-1} \). Then,

\[
\mathbb{P}[|A \cap S_i| = 1] = \sum_{j \in A} \mathbb{P}[j \in S_i, k \not\in S_i \text{ for all } k \in A \setminus \{j\}]
\]

\[
= \sum_{j \in A} \frac{1}{2^i} \left(1 - \frac{1}{2^i}\right)^{|A|-1}
\]

\[
= \frac{|A|}{2^i} \left(1 - \frac{1}{2^i}\right)^{|A|-1}
\]

\[
> \frac{|A|}{2^i} \left(1 - \frac{|A|}{2^i}\right) > 1/8
\]

Can boost the probability from 1/8 to 1 – 1/\text{poly}(n) by repeating the process \(O(\log n) \) times in parallel.
Definition
We say a collection \mathcal{H} of functions $D \to R$ is k-wise independent if for any set of k distinct values $x_1, \ldots, x_k \in D$ and k values j_1, \ldots, j_k when we pick a function h uniformly at random from \mathcal{H},

$$\Pr[h(x_1) = j_1, h(x_2) = j_2, \ldots, h(x_k) = j_k] = \frac{1}{|R|^k}$$

For example,

$$\mathcal{H} = \{ h(x) = a_kx^k + a_{k-1}x^{k-1} + \ldots + a_0 \mod p : a_i \in \{0,1,\ldots,p-1\} \text{ for all } i \}$$

is a family of k-wise hash functions from $[n]$ to $\{0,\ldots,p-1\}$ if p a prime greater than n. Can store h using $O(k \log p)$ bits.
How to do it with hash functions: Part 2

▶ To define S_0, S_1, S_2, \ldots, pick h from a 2-wise independent family of hash functions.

▶ Let $S_i = \{x \in [N] : h(x) \text{ is divisible by } 2^i\}$ and so

$$
\gamma_i = \mathbb{P} \left[j \in S_i \right] = \left(\left\lfloor (p - 1)/2^i \right\rfloor + 1 \right) / p \approx 1/2^i
$$

▶ If i satisfies that $2^{i-2} \leq |A| < 2^{i-1}m$ then,

$$
\mathbb{P} \left[|A \cap S_i| = 1 \right] = \sum_{j \in A} \mathbb{P} \left[j \in S_i, k \not\in S_i \text{ for all } k \in A \setminus \{j\} \right]
$$

$$
= \sum_{j \in A} \gamma_i \mathbb{P} \left[k \not\in S_i \text{ for all } k \in A \setminus \{j\} \mid j \in S_i \right]
$$

$$
\geq \sum_{j \in A} \gamma_i (1 - \sum_{k \in A \setminus \{j\}} \mathbb{P} \left[k \not\in S_i \mid j \in S_i \right])
$$

$$
\geq \sum_{j \in A} \gamma_i (1 - \gamma_i) > 1/8
$$
From communication protocol to data stream algorithm

Assuming availability of random bits, each message can be computed in $O(\text{polylog } n)$ bits in the data stream model. Total of $O(n \text{ polylog } n)$ bits.

When edge $\{i, j\}$ is inserted where $j > i$:

\[
\begin{align*}
A_t x_i &\leftarrow A_t x_i + A_t e_{i,j} \\
A_t x_j &\leftarrow A_t x_j - A_t e_{i,j}
\end{align*}
\]

where $e_{i,j}$ is the length $\binom{n}{2}$ binary vector whose only non-zero entry is in the $\{i, j\}$th entry.

When edge $\{i, j\}$ is deleted where $j > i$:

\[
\begin{align*}
A_t x_i &\leftarrow A_t x_i - A_t e_{i,j} \\
A_t x_j &\leftarrow A_t x_j + A_t e_{i,j}
\end{align*}
\]