A 3 approximation for correlation clustering in complete graphs.

[Ailon, Charikar, Newman, J.ACM 08]

Emulating algorithm in small space and limited number of passes.

[Ahn, Cormode, Guha, McGregor, Wirth ICML 16]
Correlation Clustering

- Let G be a complete graph on n nodes where edges are colored red or blue. Given a clustering, say an edge e is unhappy if

 \((e \text{ is red and endpoints in different clusters})\)
 \(\text{or } (e \text{ is blue and endpoints in same clusters})\)

- **Problem:** Find clustering minimizing number of unhappy edges.

- Say a triangle with exactly two red edges is bad. Let \mathcal{B} be set of bad triangles. Minimum number of unhappy edges is at least

 \[
 \min \left\{ \sum_{e \in E} x_e : x_e \in \{0, 1\} \text{ and } \sum_{e \in T} x_e \geq 1 \text{ for all } T \in \mathcal{B} \right\}
 \]

 since, if we interpret $x_e = 1$ as making e unhappy, we need to disappoint at least one edge in each bad triangle.
Correlation Clustering Algorithm

We say node u is a friend of node v is the edge $\{u, v\}$ is red.

Non-Streaming Version:

- Randomly order nodes: v_1, v_2, \ldots, v_n. Mark each as uncovered.
- For $i = 1$ to n: If v_i uncovered, let v_i and it’s uncovered friends be a cluster. Cover these nodes and say “v_i was chosen as a pivot.”

Emulating in the Streaming Model:

- Preprocess: Randomly order nodes: v_1, v_2, \ldots, v_n.
- First Pass: Store all red edges incident to $\{v_1, \ldots, v_{\sqrt{n}}\}$. Emulate the first \sqrt{n} steps of the algorithm.
- Second Pass: Store all red edges that have both endpoints uncovered at end of first pass. Emulate remaining steps of the algorithm.

Will show a) achieves factor 3 approx and b) the streaming algorithm uses $\tilde{O}(n^{1.5})$ space. Can also get a $O(\log \log n)$ pass, $\tilde{O}(n)$ space algorithm.
Analyzing Approximation Ratio: Part 1

- Let $T \in \mathcal{B}$ with nodes $\{a, b, c\}$. Define events

 $B_T = \text{node in } T \text{ chosen as a pivot and other nodes uncovered at time}$

 $B_{b,c}^a = B_T \cap \{\text{pivot}=a\} \quad B_{a,c}^b = B_T \cap \{\text{pivot}=b\} \quad B_{a,b}^c = B_T \cap \{\text{pivot}=c\}$

- Charge an unhappy edge to bad triangle formed by it and the pivot when it was made unhappy. Each $T \in \mathcal{B}$ charged at most once.

- Let $z_T = \mathbb{P}[B_T]/3$. Expected cost is $\sum_{t \in \mathcal{B}} \mathbb{P}[B_T] = 3 \sum_{t \in \mathcal{B}} z_T$.

- $\mathbb{P}[B_{b,c}^a] = \mathbb{P}[B_{a,c}^b] = \mathbb{P}[B_{a,b}^c] = z_T$, e.g.,

 $\mathbb{P}[B_{b,c}^a] = \mathbb{P}[B_{b,c}^a \mid B_T] \mathbb{P}[B_T] = \mathbb{P}[B_T]/3 = z_T$.

- Since $B_{b,c}^a \cap B_{b,c}^{a'} = \emptyset$ for $\{a, b, c\}, \{a', b, c\} \in \mathcal{B}$,

 $\sum_{a:\{a,b,c\} \in \mathcal{B}} \mathbb{P}[B_{b,c}^a] \leq 1$

- And so for any $e = \{b, c\}$

 $\sum_{T \in \mathcal{B} : e \in T} z_T = \sum_{a:\{a,b,c\} \in \mathcal{B}} \mathbb{P}[B_{b,c}^a] \leq 1$
Using LP duality:

\[
\text{OPT} \geq \min \left\{ \sum_{e \in E} x_e : x_e \in \{0, 1\} \quad \text{and} \quad \sum_{e \in T} x_e \geq 1 \quad \text{for all} \quad T \in \mathcal{B} \right\}
\]

\[
\geq \min \left\{ \sum_{e \in E} x_e : x_e \geq 0 \quad \text{and} \quad \sum_{e \in T} x_e \geq 1 \quad \text{for all} \quad T \in \mathcal{B} \right\}
\]

\[
= \max \left\{ \sum_{T \in \mathcal{B}} y_T : y_T \geq 0 \quad \text{and} \quad \sum_{T \in \mathcal{B}: e \in T} y_T \leq 1 \quad \text{for all} \quad e \in E \right\}
\]

\[
\geq \sum_{T \in \mathcal{B}} z_T
\]

where the last line follows since \(\sum_{T \in \mathcal{B}: e \in T} z_T \leq 1\).

Hence, expected cost is

\[
\sum_{t \in \mathcal{B}} \mathbb{P}[B_t] = 3 \sum_{t \in \mathcal{B}} z_T \leq 3 \text{OPT}.
\]
Space Analysis

Algorithm stores $\sqrt{n} \times n$ edges in first pass. Next lemma implies every uncovered node has $\tilde{O}(n^{0.5})$ friends after first pass with high probability. Hence, $\tilde{O}(n^{1.5})$ edges are stored in the second pass.

Lemma

After r iterations, every uncovered node has $< 10(\log n)n/r$ friends whp.

- Let $\alpha = 10(\log n)n/r$. Fix a node v and define event,

 $B_i = \text{"v uncovered and has at least } \alpha \text{ uncovered friends after } i \text{ iterations"}$

- Note that $\mathbb{P}[B_i|B_{i-1} \cap \ldots B_1] \leq 1 - \frac{\alpha}{n-i+1} \leq \exp(-\alpha/n)$ and so,

 $\mathbb{P}[B_r] = \mathbb{P}[B_r \cap B_{r-1} \cap \ldots \cap B_1] \leq \exp(-\alpha/n)^r \leq 1/n^{10}$

- Hence, the union bound implies that with probability at least $1 - 1/n^9$, every uncovered node has less than α friends.