CMPSCI 711: More Advanced Algorithms
Graphs 1: Insert-Only Streams for Connectivity Problems

Andrew McGregor

Last Compiled: February 1, 2018
Graph Streams

- Consider a stream of m edges

$$\langle e_1, e_2, \ldots, e_m \rangle$$

defining a graph G with nodes $V = [n]$ and $E = \{e_1, \ldots, e_m\}$

- Massive graphs include social networks, web graph, call graphs, etc.
- What can we compute about G in $o(m)$ space?
- Focus on *semi-streaming* space restriction of $O(n \cdot \text{polylog } n)$ bits.
Warm-Up: Connectivity

- **Goal**: Compute the number of connected components.
- **Algorithm**: Maintain a spanning forest F
 - $F \leftarrow \emptyset$
 - For each edge (u, v), if u and v aren't connected in F,
 \[
 F \leftarrow F \cup \{(u, v)\}
 \]
- **Analysis**:
 - F has the same number of connected components as G
 - F has at most $n - 1$ edges.
- **Thm**: Can count connected components in $O(n \log n)$ space.
Extension: k-Edge Connectivity

- **Goal:** Check if all cuts are of size at least k.
- **Algorithm:** Maintain k forests F_1, \ldots, F_k
 - $F_1, \ldots, F_k \leftarrow \emptyset$
 - For each edge (u, v), find smallest $i \leq k$ such that u and v aren’t connected in F_i,
 \[F_i \leftarrow F_i \cup \{(u, v)\} \]
 If no such i exists, ignore edge.
- **Analysis:**
 - Each F_i has at most $n - 1$ edges so total edges is $O(nk)$
 - **Lemma:** Min-Cut$(V, E) < k$ iff Min-Cut$(V, F_1 \cup \ldots \cup F_k) < k$
 - **Thm:** Can check k-connectivity in $O(kn \log n)$ space.
Proof of Lemma

- Let $H = (V, F_1 \cup \ldots \cup F_k)$ and let $(S, V \setminus S)$ be an arbitrary cut.
- Since H is a subgraph:
 \[
 |E_G(S)| \geq |E_H(S)|
 \]
 where $E_H(S)$ and $E_G(S)$ are the edges across the cut in H and G
- Suppose there exists $(u, v) \in E_G(S)$ but $(u, v) \notin F_1 \cup \ldots \cup F_k$. Then (u, v) must be connected in each F_i. Since F_i are disjoint,
 \[
 |E_H(S)| \geq \min(|E_G(S)|, k)
 \]
Spanners

Definition
An α-spanner of graph G is a subgraph H such that for any nodes u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v).$$

where d_G and d_H are the shortest path distances in G and H respectively.

▸ **Algorithm:**
 ▸ $H \leftarrow \emptyset$.
 ▸ For each edge (u, v), if $d_H(u, v) \geq 2t$, $H \leftarrow H \cup \{(u, v)\}$

▸ **Analysis:**
 ▸ Distances increase by at most a factor $2t - 1$ since an edge (u, v) is only forgotten if there's already a detour of length at most $2t - 1$.
 ▸ **Lemma:** H has $O(n^{1+1/t})$ edges since all cycles have length $\geq 2t + 1$.

Theorem
Can $(2t - 1)$-approximate all distances using only $O(n^{1+1/t})$ space.
Proof of Lemma

Lemma

A graph H on n nodes with no cycles of length $\leq 2t$ has $O(n^{1+1/t})$ edges.

Let $d = 2m/n$ be the average degree of H.

Let J be the graph formed by removing nodes with degree less than $d/2$ until no such nodes remain.

J is not empty: Since $\leq n$ can be removed and each node removal removes $< d/2$ edges, the total number of edges removed is $< nd/2 = m$.

Grow a BFS of depth t from an arbitrary node in J.

Because a) no cycles of length less than $2t + 1$ and b) all degrees in J are at least $d/2$, number of nodes at t-th level of BFS is at least

$$(d/2 - 1)^t = (m/n - 1)^t$$

But $(m/n - 1)^t \leq |J| \leq n$ and therefore,

$$m \leq n + n^{1+1/t}.$$

If there was no t-th level then J is a tree with min degree $d/2 = m/n$ and hence $m < n$ since the average degree in a tree is < 1.

7/11
Sparsifier

Definition
An α-sparsifier of graph G is a weighted subgraph H such that for any cut $(S, V \setminus S)$,

$$C_G(S) \leq C_H(S) \leq \alpha C_G(S).$$

where C_G and C_H is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)
There exists a (non-streaming) algorithm A that constructs a $(1 + \epsilon)$-sparsifier with only $O(n\epsilon^{-2})$ edges.

Idea for stream algorithm is to use A as a black box to “recursively” sparsify the graph stream.
Basic Properties of Sparsifiers

Lemma
Suppose H_1 and H_2 are α-sparsifiers of G_1 and G_2. Then $H_1 \cup H_2$ is an α-sparsifier of $G_1 \cup G_2$.

Lemma
Suppose J is an α-sparsifiers of H and H is an α-sparsifier of G. Then J is an α^2-sparsifier of G.
Stream Sparsification

- Divide length m stream into segments of length $t = O(n\epsilon^{-2})$
- Let $G_0, G_1, \ldots, G_{m/t-1}$ be graphs defined by each segment and let

 \[G^1_0 = G_0 \cup G_1, \quad G^1_2 = G_2 \cup G_3, \ldots, \quad G^1_{m/t-2} = G_{m/t-2} \cup G_{m/t-1} \]

 and for $i > 1$,

 \[G^i_{j2^i} = G_{j2^i} \cup G_{j2^i+1} \cup \ldots \cup G_{j2^i+2^i-1} \]

 and note that $G^{\log m}_0 = G$.
- Let $\tilde{G}^i_{j2^i}$ be a $(1 + \gamma)$-sparsifier of $\tilde{G}^{i-1}_{j2^{i-1}} \cup \tilde{G}^{i-1}_{j2^{i+2^{i-1}}}$ and $\tilde{G}_j = G_j$.
- Hence, $\tilde{G}^{\log n}_0$ is a $(1 + \gamma)^{\log m}$-sparsifier of G.
- Can compute $\tilde{G}^{\log n}_0$ in $O(n\gamma^{-2} \log m)$ space.
- Setting $\gamma = \frac{\epsilon}{\log m}$ gives $(1 + \epsilon)$-sparsifier in $O(n\epsilon^{-2} \log^3 m)$ space.
Spectral Sparsification

- Given a graph G, the Laplacian matrix $L_G \in \mathbb{R}^{n \times n}$ has entries:

$$L_{ij} = \begin{cases}
\deg(i) & \text{if } i = j \\
-1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}$$

- H is an $(1 + \epsilon)$ spectral sparsifier if for all $\forall x \in \mathbb{R}^n$, $(1 - \epsilon)x^T L_G x \leq x^T L_H x \leq (1 + \epsilon)x^T L_G x$

- Note that $x^T L_G x = \sum_{(i,j) \in E} (x_i - x_j)^2$ and hence H is a $(1 + \epsilon)$ sparsifier if $\forall x \in \{0,1\}^n$, $(1 - \epsilon)x^T L_G x \leq x^T L_H x \leq (1 + \epsilon)x^T L_G x$

- and therefore spectral sparsification is a generalization of ("cut" or "combinatorial") sparsification.

- Spectral sparsifiers also approximate eigenvalues. These relate to expansion properties, random walks, mixing times etc.