CMPSCI 711: More Advanced Algorithms Section 6-3: Stochastic Streams

Andrew McGregor

Last Compiled: April 29, 2012

Random-Order Median

- ► Goal: Want to find exact median of a set S of m numbers in [n].
- How much space is required if elements arrive in random order?
- ▶ For simplicity assume *m* odd and elements are distinct.

Munro-Paterson Algorithm

- Let S_t be first t elements that arrive.
- Algorithm maintains set A of a contiguous (in rank) elements of S_t, and ℓ = |{i ∈ S_t : i < min(A)}| and h = |{i ∈ S_t : i > max(A)}|.
- Initially $A \leftarrow S_{\ell}$ and $\ell = h = 0$.
- For each new item s:
 - If $s < \min(A)$ then increment ℓ .
 - If s > max(A) then increment h.
 - If $\min(A) < s < \max(A)$ then $A \leftarrow A \cup \{s\} \setminus \{s'\}$ where

$$s' = egin{cases} \min(A) & ext{ if } \ell \leq h \ \max(A) & ext{ if } \ell > h \end{cases}$$

and increment ℓ or h based on whether min(A) or max(A) removed.

- ▶ If at end of stream, ℓ , h < n/2 we can return the exact median.
- Thm: Can find median with high probability if $s = O(\sqrt{m} \log m)$.

Analysis

• Let x = median(S).

▶ For algorithm to fail, there must be some time t when either

- 1. $\min(A) \ge x$ and $\ell \le h$
- 2. $\max(A) \leq x \text{ and } \ell > h$
- Both cases are similar so focus on first case.
- ▶ Let $L = S_t \cap \{y < x\}$. Then $|L| \approx t/2$ and specifically,

$$\mathbb{P}[||L| - t/2| \le a/3] \ge 1 - 1/m^2$$

where $a = c\sqrt{m\log m}$ for some c > 0

• But min(A) $\geq x$ and $|L| \geq t/2 - a/3$ implies

$$\ell \ge |L| \ge t/2 - a/3$$

▶ Contradiction! Since $\ell + h + a = t$, $\ell \leq h$ implies

$$\ell \leq t/2 - a/2$$