Random-Order Median

- **Goal:** Want to find exact median of a set S of m numbers in $[n]$.
- How much space is required if elements arrive in random order?
- For simplicity assume m odd and elements are distinct.
Munro-Paterson Algorithm

- Let S_t be first t elements that arrive.
- Algorithm maintains set A of a contiguous (in rank) elements of S_t, and $\ell = |\{i \in S_t : i < \text{min}(A)\}|$ and $h = |\{i \in S_t : i > \text{max}(A)\}|$.
- Initially $A \leftarrow S_\ell$ and $\ell = h = 0$.
- For each new item s:
 - If $s < \text{min}(A)$ then increment ℓ.
 - If $s > \text{max}(A)$ then increment h.
 - If $\text{min}(A) < s < \text{max}(A)$ then $A \leftarrow A \cup \{s\} \setminus \{s'\}$ where
 \[
s' = \begin{cases}
 \text{min}(A) & \text{if } \ell \leq h \\
 \text{max}(A) & \text{if } \ell > h
 \end{cases}
 \]
 and increment ℓ or h based on whether $\text{min}(A)$ or $\text{max}(A)$ removed.
- If at end of stream, $\ell, h < n/2$ we can return the exact median.
- **Thm:** Can find median with high probability if $s = O(\sqrt{m \log m})$.

Let \(x = \text{median}(S) \).

For algorithm to fail, there must be some time \(t \) when either

1. \(\min(A) \geq x \) and \(\ell \leq h \)
2. \(\max(A) \leq x \) and \(\ell > h \)

Both cases are similar so focus on first case.

Let \(L = S_t \cap \{ y < x \} \). Then \(|L| \approx t/2 \) and specifically,

\[
P[|L| - t/2 | \leq a/3] \geq 1 - 1/m^2
\]

where \(a = c \sqrt{m \log m} \) for some \(c > 0 \)

But \(\min(A) \geq x \) and \(|L| \geq t/2 - a/3 \) implies

\[
\ell \geq |L| \geq t/2 - a/3
\]

Contradiction! Since \(\ell + h + a = t \), \(\ell \leq h \) implies

\[
\ell \leq t/2 - a/2
\]