CMPSCI 711: More Advanced Algorithms
Section 6-2: Distributed Functional Monitoring

Andrew McGregor

Last Compiled: April 29, 2012
Distributed Functional Monitoring

- \(k \) streams \(S_1, S_2, \ldots, S_k \) are being observed at \(k \) locations.
- Messages are sent between the observers and a central site.
- How many messages need to be sent such that central site always knows \(f(S_1 \cup \ldots \cup S_k) \), e.g., whether the total number of elements have passed some threshold \(\tau \).

- **Contrast with Communication Complexity:** Need to track value of \(f \) dynamically. Measure number of messages rather than total size.
Outline

Counting

Distributed Sampling
Counting

- **Goal:** Determine when the total count passes threshold τ.
- **First attempt:**
 - Player i maintains $n_i =$ number of elements seen locally since last update to central site.
 - Player i sends n_i to central site if it reaches τ/k.
 - On receiving n from some player, central site sets $\tau \leftarrow \tau - n$ and broadcasts new threshold to call players.
- Correctness is clear since $\sum_i n_i < k \cdot \tau/k < \tau$.
- **Thm:** Total number of messages is $O(k^2 \log(\tau/k))$.
First Attempt Analysis

- Let $\tau_0 = \tau, \tau_1, \tau_2, \ldots$ be the sequence of thresholds.
- Note that $\tau_i \leq (1 - 1/k)\tau_{i-1}$ and hence
 \[\tau_r \leq \frac{\tau}{(1 - 1/k)^r} \]
- Therefore after $r = \log_{1-1/k}(\tau/k)$ rounds $\tau_r \leq k$.
- Each round requires $O(k)$ messages so number of messages so far is
 \[O(k \log_{1-1/k}(\tau/k)) = O(k^2 \log \tau/k) \]
- There are at most k more messages so total is
 \[k + O(k^2 \log \tau/k) = O(k^2 \log \tau/k) \].
Better Counting Algorithm

- Better algorithm: Proceeds in rounds $j = 1, 2, 3 \ldots$
 - Player i maintains n_i as before.
 - In round j, player sends n_i if it reaches $\tau/(2^j k)$
 - Central site waits until k messages are received then broadcasts the start of the new round.

- Correctness is clear since during round j, $\sum_i n_i < k \cdot \tau/(2^j k) < \tau/2^j$
 and total count registered by central site at start of round is
 \[
 \tau/2 + \tau/4 + \ldots + \tau/2^{j-1} = \tau - \tau/2^{j-1}.
 \]

- *Thm:* Total number of messages is $O(k \log(\tau/k))$.

6/11
Second Attempt Analysis

- Number of rounds is $\log(\tau/k)$ since $j > \log(\tau/k)$ implies
 \[
 \frac{\tau}{(2^j k)} < 1 .
 \]
- Each rounds has $O(k)$ messages, so total number of messages is
 \[
 O(k \log(\tau/k)) .
 \]
Outline

Counting

Distributed Sampling
Distributed Sampling

- Suppose we want to maintain a random set of s elements from $S_1 \cup S_2 \cup \ldots \cup S_k$

- **Basic Idea:** When each element x is observed by a player, it is assigned a random weight $w(x) \in [0, 1]$. The s elements from $S_1 \cup S_2 \cup \ldots \cup S_k$ with the smallest weights are a random subset.
Sampling Algorithm

- **Stored Values:** Central site maintains a set S of $\leq s$ elements and
 \[u = \max\{w(x) : x \in S\} \]
 and each player i maintains some $u_i \geq u$

- **Player:** On seeing x, player sends $(x, w(x))$ if $w(x) < u_i$.

- **Central Site:** Updates S such that it includes the s elements from $S \cup \{x\}$ with the smallest weights. Sends u to player i.

- **Central Site:** Broadcasts u if u has decreased by a factor r since last broadcast. Call this a “new round.”
Sketch of Analysis

- Let R be the number of rounds. Then

$$\mathbb{E}[R] \leq O(\log_r(n/s))$$

since final value of u should be about s/n and u decreases by $1/r$ with each round.

- Expected number of messages per round is about $O(rs + k)$.
 - Every sent x gets added to S with probability at least $1/r$.
 - Every update to S decreases u by around a $(1 - 1/s)$ factor.
 - Hence expect $O(rs)$ messages before the broadcast in a round.

- Total messages is $O((rs + k) \log_r(n/s))$ and optimize r to get:
 - $O(k \log(n/s)/\log(k/s))$ if $s < k/8$
 - $O(s \log(n/s))$ if $s \geq k/8$