CMPSCI 711: More Advanced Algorithms
Section 4-1: Sequences

Andrew McGregor
Outline

Sequences and Strings

Longest Increasing Subsequence
Bracket Matching

- Consider a length m stream of round and square brackets, e.g.

 \[[] ([[]]) ([]) \]

- Say sequence is *well-balanced* if corresponding open and close brackets are of the same type.

- Can we recognize a well-balanced sequence in $O(\sqrt{n})$ space?
First Part of Result

Say a sequence is **t-turn** if there are \(t \) open brackets immediately followed by a close bracket. E.g., following sequence is 3-turn:

\[
[] ([[]] ([]))
\]

Helpful to consider sequence in 2D representation where *height* corresponds to excess of open brackets amongst preceding brackets.

\[
[] []
[] ()
[] ()
\]

Using \(O(t) \) memory, it’s possible to determine height \(h \) of each new bracket and whether it’s the 1st, 2nd, \ldots \ bracket at this height.

As we read each symbol \(\alpha \), generate updates to \(x, y \in \{0, 1, 2\}^{t \times m} \)

\[
x_{h,i} \leftarrow x_{h,i} + \begin{cases}
1 & \text{if } \alpha = "(" \\
2 & \text{if } \alpha = "["
\end{cases} \quad y_{h,i} \leftarrow y_{h,i} + \begin{cases}
1 & \text{if } \alpha = ")" \\
2 & \text{if } \alpha = "]\"
\]

if \(\alpha \) is the \(i \)-th bracket at height \(h \). Then it suffices to check whether \(x = y \) and this can be done by sketching or finger-printing.
If we can ensure $t = O(\sqrt{n})$ the desired result follows.

Buffer length-\sqrt{n} segments and perform all cancelations within each segment before passing it to the t-turn algorithm. E.g.,

\[
\begin{array}{c}
[&] ([[]] []) ([&]) \\
\end{array}
\]

becomes

\[
\begin{array}{c}
([&] [&]) ([&]) \\
\end{array}
\]
Outline

Sequences and Strings

Longest Increasing Subsequence
Length of Longest Increasing Subsequence

- **Goal:** Estimate the length of the longest increasing subsequence.
- **Idea:** For $\ell \geq 0$, maintain

 $$A[\ell] = \text{smallest value that ends a length } \ell \text{ increasing sequence so far}$$

 - Initially, $A[0] = -\infty$ and $A[\ell] = \infty$ for all $\ell > 0$
 - If the new element is v, find smallest ℓ such that $A[\ell] \leq v$ and set

 $$A[\ell + 1] \leftarrow v$$