
CMPSCI 711: More Advanced Algorithms
Section 4-1: Sequences

Andrew McGregor

Last Compiled: April 29, 2012

1/7

Outline

Sequences and Strings

Longest Increasing Subsequence

2/7

Bracket Matching

I Consider a length m stream of round and square brackets, e.g.

[] ([[]] ([]))

I Say sequence is well-balanced if corresponding open and close
brackets are of the same type.

I Can we recognize a well-balanced sequence in O(
√
n) space?

3/7

First Part of Result
I Say a sequence is t-turn if there are t open brackets immediately

followed by a close bracket. E.g., following sequence is 3-turn:

[] ([[]] ([]))

I Helpful to consider sequence in 2D representation where height
corresponds to excess of open brackets amongst preceding brackets.

[] []
[] ()

[] ()

I Using O(t) memory, it’s possible to determine height h of each new
bracket and whether it’s the 1st, 2nd, . . . bracket at this height.

I As we read each symbol α, generate updates to x , y ∈ {0, 1, 2}t×m

xh,i ← xh,i +

{
1 if α = “(”

2 if α = “[”
yh,i ← yh,i +

{
1 if α = “)”

2 if α = “]”

if α is the i-th bracket at height h. Then it suffices to check whether
x = y and this can be done by sketching or finger-printing.

4/7

Second Part of Result

I If we can ensure t = O(
√
n) the desired result follows.

I Buffer length-
√
n segments and perform all cancelations within each

segment before passing it to the t-turn algorithm. E.g.,

[] (
∣∣∣ [[]

∣∣∣] ([
∣∣∣]))

becomes
(
∣∣∣ [

∣∣∣] ([
∣∣∣]))

5/7

Outline

Sequences and Strings

Longest Increasing Subsequence

6/7

Length of Longest Increasing Subsequence

I Goal: Estimate the length of the longest increasing subsequence.

I Idea: For ` ≥ 0, maintain

A[`] = smallest value that ends a length ` increasing sequence so far

I Initially, A[0] = −∞ and A[`] =∞ for all ` > 0
I If the new element is v , find smallest ` such that A[`] ≤ v and set

A[` + 1]← v

7/7

	Sequences and Strings
	Longest Increasing Subsequence

