CMPSCI 711: More Advanced Algorithms

Section 3-2: Grid Based Algorithms

Andrew McGregor

Last Compiled: April 29, 2012

Geometric Streams

► Consider a stream of points:

$$P = \langle p_1, \ldots, p_n \rangle$$

Now suppose each $p_i \in \{1, ..., \Delta\}^d$. For this lecture assume d = 2.

▶ What properties of *P* can we compute in sub-linear space? Want to support both insertions and deletions.

Outline

Warm-Up: Diameter

Probabilistic Embedding

Diameter

▶ *Goal:* Given a sequence of points *P* from $\{1, ..., \Delta\}^2$, estimate

$$D = \max_{p,q \in P} \|p - q\|_1.$$

- ► Idea:
 - ▶ Impose square grids $G_0, ..., G_k$ of side-lengths

$$1,(1+\epsilon),(1+\epsilon)^2,\ldots,(1+\epsilon)^k=\Delta.$$

- Consider the points at resolution of each grid.
- ▶ Can use G_i to approximate distances up to $\pm 4(1 + \epsilon)^i$ so knowing points in G_i gives a $(1 + \epsilon)$ approx if $i \le \log_{1+\epsilon}(\epsilon D/4)$.
- ▶ For $i = \log_{1+\epsilon}(\epsilon D/4)$, there $\leq (D/(\epsilon D/4))^2 = 16/\epsilon^2$ non-empty cells
- ► *Algorithm*:
 - ▶ Use F_0 estimator to approx. # non-empty cells and let j be minimum value such that G_j contains $\leq k = 16/\epsilon^2$ non-empty cells.
 - ▶ Use k sparse-recovery algorithm to find all the non-empty cells in G_j .

Outline

Warm-Up: Diameter

Probabilistic Embedding

Tree Embedding

▶ Let G_0, \ldots, G_k of side-lengths $1, 2, 2^2, \ldots, 2^k = \Delta$

▶ Consider a tree T where the leaves correspond to cells in G_0 and internal nodes correspond to cells in G_i for i > 0. There is an edge of weight 2^i between a cell c in G_i and a cell c' in G_{i+1} if $c \subset c'$.

▶ By construction $d_T(p,q) = \sum_{i>0} 2^{i+1} I[p,q]$ in different cells of G_i

Tree Distance versus Original Distance

- ▶ Easy to see $d_T(p,q) \ge ||p-q||_1$.
- ▶ Can we say $d_T(p,q)$ isn't much bigger than $||p-q||_1$? No, but perhaps randomization would help...

Random Offsets

▶ Let G_0, \ldots, G_k of side-lengths

$$1, 2, 2^2, \ldots, 2^k = \Delta$$

but use a random offset $r = (r_1, r_2) \in \{1, 2, ... \Delta\}^2$. E.g., rather than cell $[5, 8] \times [17, 21]$ we have $[5 + r_1, 8 + r_1] \times [17 + r_2, 21 + r_2]$.

Expected distance is:

$$\mathbb{E}\left[d_T(p,q)\right] = \sum_{i=0}^{\log \Delta - 1} 2^{i+1} \cdot \mathbb{P}\left[p, q \text{ in different cells of } G_i\right]$$

$$\leq \sum_{i=0}^{\log \Delta - 1} 2^{i+1} \cdot \frac{\|p-q\|_1}{2^i}$$

$$= O(\log \Delta) \cdot \|p-q\|_1$$

► Hence, we have

$$||p - q||_1 \le d_T(p, q) \le \mathbb{E}[d_T(p, q)] \le O(\log \Delta)||p - q||_1$$

Application: Minimum Spanning Trees

- ▶ Goal: Estimate weight w(T) of minimum spanning tree T of P.
- ▶ Construct probabilistic embedding of P and let T' be the minimum Steiner tree for P in embedding.
- ▶ Weight of T' in the embedding is:

$$w(T') = \sum_{i=0}^{L-1} 2^i \cdot (\# \text{ non-zero cells in } G_i)$$

where L is the lowest level where there is only 1 non-zero cell.

► Then,

$$w(T) \le 2w(T')$$
 and $\mathbb{E}[w(T')] \le O(\log \Delta)w(T)$

- ▶ Hence w(T') is a $O(\log \Delta)$ approximation to weight of MST.
- ▶ Can $(1 + \epsilon)$ approximate w(T') with an F_0 estimator.