Sketching Graphs
Linear Sketches

• **Random linear projection** $M: \mathbb{R}^n \to \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high probability where $k \ll n$.

\[
\begin{pmatrix}
M \\
\end{pmatrix}
\begin{pmatrix}
v \\
\end{pmatrix} = \begin{pmatrix}
Mv \\
\end{pmatrix} \longrightarrow \text{answer}
\]

• **Many Results**: Estimating norms, entropy, support size, quantiles, heavy hitters, fitting histograms and polynomials, ...

• **Rich Theory**: Related to compressed sensing and sparse recovery, dimensionality reduction and metric embeddings, ...
Sketching Graphs?

? *Question:* Are there sketches for structured objects like graphs?

\[
\begin{pmatrix}
M \\
A_G
\end{pmatrix}
\begin{pmatrix}
\end{pmatrix}
= \begin{pmatrix}
MA_G
\end{pmatrix} \rightarrow \text{answer}
\]

- *Example:* Project $O(n^2)$-dimensional adjacency matrix A_G to $\tilde{O}(n)$ dimensions and still determine if graph is bipartite?

! *No cheating!* Assume M is finite precision etc.
Why? Graph Streams

- In **semi-streaming**, want to process graph defined by edges $e_1, ..., e_m$ with $\tilde{O}(n)$ memory and reading sequence in order.

 [Muthukrishnan 05; Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

- **Dynamic Graphs**: Work on graph streams doesn’t support edge deletions! Work on dynamic graphs stores entire graph!

- **Example**: Connectivity is easy if edges are only inserted...

- **Sketches**: To delete e from G: update $MA_G \rightarrow MA_G - MA_e = MA_{G-e}$
Why? Distributed Processing

Input: $G = (V, E)$

$G_1 = (V, E_1)$
$G_2 = (V, E_2)$
$G_3 = (V, E_3)$
$G_4 = (V, E_4)$

Output: $MG = MG_1 + MG_2 + MG_3 + MG_4$
a) Connectivity

b) Applications
Connectivity

- **Thm:** Can check connectivity with $O(n\log^3 n)$-size sketch.
- **Main Idea:** a) Sketch! b) Run Algorithm in Sketch Space
- **Catch:** Sketch must be homomorphic for algorithm operations.
Ingredient 1: Basic Connectivity Algorithm

- **Algorithm (Spanning Forest):**
 1. For each node, select an incident edge
 2. Contract selected edges. Repeat until no edges.

- **Lemma:** Takes $O(\log n)$ steps and selected edges include spanning forest.
For node i, let a_i be vector indexed by node pairs. Non-zero entries: $a_i[i,j] = 1$ if $j > i$ and $a_i[i,j] = -1$ if $j < i$.

Example:

\[
\begin{align*}
 a_1 &= \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \\
 a_2 &= \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\end{align*}
\]

Lemma: For any subset of nodes $S \subseteq V$,

\[
\text{support} \left(\sum_{i \in S} a_i \right) = E(S, V \setminus S)
\]
Ingredient 3: l_0-Sampling

Lemma: Exists random $C \in \mathbb{R}^{d \times m}$ with $d = O(\log^2 m)$ such that for any $a \in \mathbb{R}^m$

$$Ca \rightarrow e \in \text{support}(a)$$

with probability $9/10$.

[Cormode, Muthukrishnan, Rozenbaum 05; Jowhari, Saglam, Tardos 11]
Recipe: Sketch & Compute on Sketches

- **Sketch**: Apply log n sketches C_i to each a_j
- **Run Algorithm in Sketch Space**:
 - Use C_1a_j to get incident edge on each node j
 - For $i=2$ to t:
 - To get incident edge on supernode $S \subset V$ use:

 $$
 \sum_{j \in S} C_i a_j = C_i \left(\sum_{j \in S} a_j \right) \rightarrow e \in \text{support}\left(\sum_{j \in S} a_j \right) = E(S, V \setminus S)
 $$
Connectivity

- **Thm:** Can check connectivity with $O(n \log^3 n)$-size sketch.

- **Main Idea:**
 a) Sketch!
 b) Run Algorithm in Sketch-Space

- **Catch:** Sketch must be homomorphic for algorithm operations.
a) Connectivity

b) Applications
k-Connectivity

- A graph is **k-connected** if every cut has size $\geq k$.
- **Thm:** Can check k-connectivity with $O(nk\log^3 n)$-size sketch.
- **Extension:** There exists a $O(\varepsilon^{-2}n\log^5 n)$-size sketch with which we can approximate all cuts up to a factor $(1+\varepsilon)$.

Original Graph
Sparsifier Graph
Algorithm (k-Connectivity):

1. Let F_1 be spanning forest of $G(V,E)$
2. For $i = 2$ to k:
 2.1. Let F_i be spanning forest of $G(V,E - F_1 - ... - F_{i-1})$

Lemma: $G(V,F_1 + ... + F_k)$ is k-connected iff $G(V,E)$ is.
Ingredient 2: Connectivity Sketches

- **Sketch:** Simultaneously construct k independent sketches \(\{M_1A_G, M_2A_G, \ldots, M_kA_G\} \) for connectivity.

- **Run Algorithm in Sketch Space:**
 - Use M_1A_G to find a spanning forest F_1 of G
 - Use $M_2A_G - M_2A_{F_1} = M_2(A_G - A_{F_1}) = M_2(A_G - F_1)$ to find F_2
 - Use $M_3A_G - M_3A_{F_1} - M_3A_{F_2} = M_3(A_G - F_1 - F_2)$ to find F_3
 - etc.
k-Connectivity

- A graph is **k-connected** if every cut has size $\geq k$.
- **Thm:** Can check k-connectivity with $O(nk\log^3 n)$-size sketch.
- **Extension:** There exists a $O(\varepsilon^{-2}n\log^4 n)$-size sketch with which we can approximate all cuts up to a factor $(1+\varepsilon)$.

Original Graph
Sparsifier Graph
Bipartiteness

- **Idea:** Given G, define graph G' where a node v becomes v_1 and v_2 and edge (u,v) becomes (u_1,v_2) and (u_2,v_1).

- **Lemma:** Number of connected components doubles iff G is bipartite. Can sketch G' implicitly.

- **Thm:** Can check bipartiteness with $O(n \log^3 n)$-size sketch.
Minimum Spanning Tree

- **Idea**: If n_i is the number of connected components if we ignore edges with weight greater than $(1+\varepsilon)^i$, then:

 $$w(\text{MST}) \leq \sum_{i} \varepsilon (1 + \varepsilon)^i n_i \leq (1 + \varepsilon)w(\text{MST})$$

- **Thm**: Can $(1+\varepsilon)$ approximate MST in one-pass dynamic semi-streaming model.

- **Thm**: Can find exact MST in dynamic semi-streaming model using $O(\log n/\log \log n)$ passes.
Summary

- **Graph Sketches:** Initiates the study of linear projections that preserve structural properties of graphs. Application to dynamic-graph streams and are embarrassingly parallelizable.

- **Properties:** Connectivity, sparsifiers, spanners, bipartite, minimum spanning trees, small cliques, matchings, ...