Graph Streams

- Consider a stream of m edges
 \[
 \langle e_1, e_2, \ldots, e_m \rangle
 \]
 defining a graph G with nodes $V = [n]$ and $E = \{e_1, \ldots, e_m\}$
- Massive graphs include social networks, web graph, call graphs, etc.
- What can we compute about G in $o(m)$ space?
- Focus on \textit{semi-streaming} space restriction of $O(n \cdot \text{polylog } n)$ bits.
Warm-Up: Connectivity

- **Goal**: Compute the number of connected components.
- **Algorithm**: Maintain a spanning forest F
 - $F \leftarrow \emptyset$
 - For each edge (u, v), if u and v aren't connected in F,
 $$F \leftarrow F \cup \{(u, v)\}$$
- **Analysis**:
 - F has the same number of connected components as G
 - F has at most $n - 1$ edges.
- **Thm**: Can count connected components in $O(n \log n)$ space.
Extension: \(k \)-Edge Connectivity

- **Goal:** Check if all cuts are of size at least \(k \).
- **Algorithm:** Maintain \(k \) forests \(F_1, \ldots, F_k \)
 - \(F_1, \ldots, F_k \leftarrow \emptyset \)
 - For each edge \((u, v)\), find smallest \(i \leq k \) such that \(u \) and \(v \) aren’t connected in \(F_i \),
 \[
 F_i \leftarrow F_i \cup \{(u, v)\}
 \]
 If no such \(i \) exists, ignore edge.
- **Analysis:**
 - Each \(F_i \) has at most \(n - 1 \) edges so total edges is \(O(nk) \)
 - **Lemma:** \(\text{Min-Cut}(V, E) < k \) iff \(\text{Min-Cut}(V, F_1 \cup \ldots \cup F_k) < k \)
 - **Thm:** Can check \(k \)-connectivity in \(O(kn \log n) \) space.
Proof of Lemma

- Let $H = (V, F_1 \cup \ldots \cup F_k)$ and let $(S, V \setminus S)$ be an arbitrary cut.
- Since H is a subgraph:

$$|E_G(S)| \geq |E_H(S)|$$

where $E_H(S)$ and $E_G(S)$ are the edges across the cut in H and G.
- Suppose there exists $(u, v) \in E_G(S)$ but $(u, v) \notin F_1 \cup \ldots \cup F_k$. Then (u, v) must be connected in each F_i. Since F_i are disjoint,

$$|E_H(S)| \geq \min(|E_G(S)|, k)$$
Spanners

Definition
An α-spanner of graph G is a subgraph H such that for any nodes u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v).$$

where d_G and d_H are the shortest path distances in G and H respectively.

- **Algorithm:**
 - $H \leftarrow \emptyset$.
 - For each edge (u, v), if $d_H(u, v) \geq 2t$, $H \leftarrow H \cup \{(u, v)\}$

- **Analysis:**
 - Distances increase by at most a factor $2t - 1$ since an edge (u, v) is only forgotten if there’s already a detour of length at most $2t - 1$.
 - **Lemma:** H has $O(n^{1+1/t})$ edges since all cycles have length $\geq 2t + 1$.

Theorem
Can $(2t - 1)$-approximate all distances using only $O(n^{1+1/t})$ space.
Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length $\leq 2t$ has $O(n^{1+1/t})$ edges.

- Let $d = 2m/n$ be the average degree of H.
- Let J be the graph formed by removing nodes with degree less than $d/2$ until no such nodes remain.
- J is not empty because $< m/(d/2) = n$ nodes can be removed.
- Grow a BFS of depth t from an arbitrary node in J.
- Because a) no cycles of length less than $2t + 1$ and b) all degrees in J are at least $d/2$, number of nodes at t-th level of BFS is at least

$$\left(\frac{d}{2} - 1\right)^t = \left(\frac{m}{n} - 1\right)^t$$

- But $\left(\frac{m}{n} - 1\right)^t \leq |J| \leq n$ and therefore,

$$m \leq n + n^{1+1/t}.$$
Sparsifier

Definition
An α-sparsifier of graph G is a weighted subgraph H such that for any cut $(S, V \setminus S)$,

$$C_G(S) \leq C_H(S) \leq \alpha C_G(S).$$

where C_G and C_H is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)
There exists a (non-streaming) algorithm A that constructs a $(1 + \epsilon)$-sparsifier with only $O(n\epsilon^{-2})$ edges.

Idea for stream algorithm is to use A as a black box to “recursively” sparsify the graph stream.
Basic Properties of Sparsifiers

Lemma
Suppose H_1 and H_2 are α-sparsifiers of G_1 and G_2. Then $H_1 \cup H_2$ is an α-sparsifier of $G_1 \cup G_2$.

Lemma
Suppose J is an α-sparsifiers of H and H is an α-sparsifier of G. Then J is an α^2-sparsifier of G.
Stream Sparsification

- Divide length m stream into segments of length $t = O(n\epsilon^{-2})$
- Let $G_0, G_1, \ldots, G_{m/t-1}$ be graphs defined by each segment and let

$$G_0^1 = G_0 \cup G_1, \quad G_2^1 = G_2 \cup G_3, \quad \ldots, \quad G_{m/t-2}^1 = G_{m/t-2} \cup G_{m/t-1}$$

and for $i > 1$,

$$G_{j2^i}^i = G_{j2^i} \cup G_{j2^i+1} \cup \ldots \cup G_{j2^i+2^i-1}$$

and note that $G_{\log m}^0 = G$.

- Let $\tilde{G}_{j2^i}^i$ be a $(1 + \gamma)$-sparsifier of $\tilde{G}_{j2^i}^{i-1} \cup \tilde{G}_{j2^i+2^i-1}^{i-1}$ and $\tilde{G}_j = G_j$.

- Hence, $\tilde{G}_{\log n}^0$ is a $(1 + \gamma)^{\log m}$-sparsifier of G.

- Can compute $\tilde{G}_{\log n}^0$ in $O(n\gamma^{-2} \log m)$ space.

- Setting $\gamma = \frac{\epsilon}{\log m}$ gives $(1 + \epsilon)$-sparsifier in $O(n\epsilon^{-2} \log^3 m)$ space.
Spectral Sparsification

- Given a graph G, the Laplacian matrix $L_G \in \mathbb{R}^{n \times n}$ has entries:

 $$L_{ij} = \begin{cases}
 \text{deg}(i) & \text{if } i = j \\
 -1 & \text{if } (i, j) \in E \\
 0 & \text{otherwise}
 \end{cases}$$

- H is an $(1 + \epsilon)$ spectral sparsifier if for all $x \in \mathbb{R}^n$,

 $$(1 - \epsilon)x^T L_G x \leq x^T L_H x \leq (1 + \epsilon)x^T L_G x$$

- Note that $x^T L_G x = \sum_{(i,j) \in E} (x_i - x_j)^2$ and hence H is a $(1 + \epsilon)$ sparsifier if

 $$\forall x \in \{0, 1\}^n, \quad (1 - \epsilon)x^T L_G x \leq x^T L_H x \leq (1 + \epsilon)x^T L_G x$$

 and therefore spectral sparsification is a generalization of (“cut” or “combinatorial”) sparsification.

- Spectral sparsifiers also approximate eigenvalues. These relate to expansion properties, random walks, mixing times etc.