Sparse Recovery

- **Goal:** Find g such that $\|f - g\|_1$ is minimized subject to the constraint that g has at most k non-zero entries.
- Define $\text{Err}^k(f) = \min_{g: \|g\|_0 \leq k} \|f - g\|_1$
- **Exercise:** $\text{Err}^k(f) = \sum_{i \notin S} |f_i|$ where S are indices of k largest f_i
- Using $O(\epsilon^{-1} k \log n)$ space, we can find \tilde{g} such that $\|\tilde{g}\|_0 \leq k$ and
 \[
 \|\tilde{g} - f\|_1 \leq (1 + \epsilon)\text{Err}^k(f)
 \]
Count-Min Revisited

▶ Consider Count-Min sketch with depth $d = O(\log n)$, width $w = \frac{4k}{\epsilon}$

▶ For $i \in [n]$, let $\tilde{f}_i = c_{j,h_j(i)}$ for some row $j \in [d]$.

▶ Let $S = \{i_1, \ldots, i_k\}$ be the indices with maximum frequencies. Let A_i be the event that there doesn't exist $k \in S \setminus i$, with $h_j(i) = h_j(k)$.

▶ Then for $i \in [n]$,

$$
\mathbb{P}
\left[
|f_i - \tilde{f}_i| \geq \epsilon \frac{\text{Err}^k(f)}{k}
\right]
= \mathbb{P}[\neg A_i] \times \mathbb{P}
\left[
|f_i - \tilde{f}_i| \geq \epsilon \frac{\text{Err}^k(f)}{k} | \neg A_i
\right] + \\
\mathbb{P}[A_i] \times \mathbb{P}
\left[
|f_i - \tilde{f}_i| \geq \epsilon \frac{\text{Err}^k(f)}{k} | A_i
\right]
\leq \mathbb{P}[\neg A_i] + \mathbb{P}
\left[
|f_i - \tilde{f}_i| \geq \epsilon \frac{\text{Err}^k(f)}{k} | A_i
\right]
\leq k/w + 1/4 < 1/2
$$

▶ With high probability, all f_i are approximated up to error $\epsilon \text{Err}^k(f)/k$
Sparse Recovery Algorithm

- Consider a Count-Min sketch with depth d and width $w = 4k/\epsilon$
- Let $f' = (\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_n)$ be frequency estimates where for all i
 \[|f_i - \tilde{f}_i| \leq \epsilon \frac{\text{Err}^k(f)}{k} \]
- Let \tilde{g} be f' with all but the kth largest entries replaced by 0.
- **Lemma:** $\|\tilde{g} - f\|_1 \leq (1 + 3\epsilon)\text{Err}^k(f)$
Proof of Lemma

Let \(S, T \subset [n] \) be indices corresponding to largest values of \(f_i \) and \(\tilde{f}_i \).

For a vector \(x \in \mathbb{R}^n \) and \(I \subset [n] \), write \(x_I \) as the vector formed by zeroing out all entries of \(x \) except for those indices in \(I \).

Then,

\[
\| f - f'_T \|_1 \leq \| f - f_T \|_1 + \| f_T - f'_T \|_1 \\
= \| f \|_1 - \| f_T \|_1 + \| f_T - f'_T \|_1 \\
= \| f \|_1 - \| f'_T \|_1 + (\| f'_T \|_1 - \| f_T \|_1) + \| f_T - f'_T \|_1 \\
\leq \| f \|_1 - \| f'_T \|_1 + 2\| f_T - f'_T \|_1 \\
\leq \| f \|_1 - \| f'_S \|_1 + 2\| f_T - f'_T \|_1 \\
\leq \| f \|_1 - \| f_S \|_1 + (\| f_S \|_1 - \| f'_S \|_1) + 2\| f_T - f'_T \|_1 \\
\leq \| f - f_S \|_1 + \| f_S - f'_S \|_1 + 2\| f_T - f'_T \|_1 \\
\leq \text{Err}^k(f) + k\varepsilon\text{Err}^k(f)/k + 2k\varepsilon\text{Err}^k(f)/k \\
= (1 + 3\varepsilon)\text{Err}^k(f)
\]
Similar Result for ℓ_2

- **Goal:** Find g such that $\|f - g\|_2$ is minimized subject to the constraint that g has at most k non-zero entries.
- Define $\text{Err}_k^2(f) = \min_{g: \|g\|_0 \leq k} \|f - g\|_2$
- Using $O(\epsilon^{-2} k \log n)$ space, we can find \tilde{g} such that $\|\tilde{g}\|_0 \leq k$ and

$$\|\tilde{g} - f\|_2^2 \leq (1 + \epsilon)\text{Err}_k^2(f)$$
Outline

Wavelets
Haar Wavelets

- **Defn:** For $n = 8$, Haar Wavelet basis consists of rows of the matrix.

$$M = \begin{pmatrix}
\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\
\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\
\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\
\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\
\frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{pmatrix}$$

and for $n = 2^r$, the construction generalizes in the natural way.

- Note that the basis is orthonormal and $MM^T = M^T M = I$. Hence, any signal $f \in \mathbb{R}^n$ can be expressed in the Haar basis.
Sparse Representation in Haar Basis

- Let $\mathcal{H} = \{\phi_1, \ldots, \phi_n\}$ be the Haar basis.
- **Goal**: Find g that minimizes $\|f - g\|_2$ subject to the constraint that g can be expressed as the sum of at most k Haar basis vectors, i.e., g is k-sparse in the Haar basis.
- Write $f = \sum_i \lambda_i \phi_i$ where $\lambda_i = \phi_i \cdot f$.
- Suppose $g = \sum_{i \in I} \mu_i \phi_i$ for some $I \subset [n]$ of size at most k.
- Then
 \[
 \|f - g\|_2^2 = \sum_{i \in I} (\lambda_i - \mu_i)^2 + \sum_{i \notin I} \lambda_i^2
 \]
- Hence, we want to find k values of i that maximize $\mu_i = \phi_i \cdot f$.

9/11
Suppose coordinations of f are presented in order $\langle f_1, f_2, \ldots, f_n \rangle$. This is called the \textit{time-series model}.

Can easily compute $\mu_i = \phi_i \cdot f$

At any given time,
- We’ve calculated μ_i exactly for some $i \in A$
- We’ve calculated μ_i partially for some $i \in B$
- We haven’t started computing μ_i for $i \notin A \cup B$

\textit{Lemma}: The size of B is at most $\log_2 n$.

\textit{Algorithm}: Maintain only the k largest values of μ_i for $i \in A$.
- We find the optimal k term representation in $O(k + \log n)$ space.
General Update Model

- Can express goal in terms of standard basis...
- Because M is unitary,
 \[
 \|f - g\|_2^2 = (f - g)^T(f - g) = (f - g)^T M^T M(f - g) = \|Mf - Mg\|_2^2
 \]
 and g is k-sparse in Haar basis iff Mg is k-sparse in standard basis.
- Hence, finding best g is same as finding $h = Mg$ with $\|h\|_0 \leq k$ that minimizes $\|Mf - h\|_2$
- Using Count-Sketch algorithm, can find \tilde{h} with $\|\tilde{h}\|_0 \leq k$ such that
 \[
 \|Mf - \tilde{h}\|_2^2 \leq (1 + \epsilon) \min_{h: h \text{ is } k\text{-sparse in standard basis}} \|Mf - h\|_2^2 \\
 = (1 + \epsilon) \min_{g: g \text{ is } k\text{-sparse in Haar basis}} \|Mf - Mg\|_2^2 \\
 = (1 + \epsilon) \min_{g: g \text{ is } k\text{-sparse in Haar basis}} \|f - g\|_2^2
 \]