CMPSCI 711: More Advanced Algorithms Section 1-2: Sketching F_{0} and F_{2}

Andrew McGregor

Last Compiled: April 29, 2012

Hash Functions

Definition

A family \mathcal{H} of functions from $A \rightarrow B$ is k-wise independent if for any distinct $x_{1}, \ldots, x_{k} \in A$ and $i_{1}, i_{2}, \ldots, i_{k} \in B$,

$$
\mathbb{P}_{h \in_{R} \mathcal{H}}\left[h\left(x_{1}\right)=i_{1}, h\left(x_{2}\right)=i_{2}, \ldots, h\left(x_{k}\right)=i_{k}\right]=\frac{1}{|B|^{k}}
$$

Example

Suppose $A \subset\{0,1,2, \ldots, p-1\}$ and $B=\{0,1,2, \ldots, p-1\}$. Then,

$$
\mathcal{H}=\left\{h(x)=\sum_{i=0}^{k-1} a_{i} x^{i} \bmod p: 0 \leq a_{0}, a_{1}, \ldots, a_{k-1} \leq p-1\right\}
$$

is a k-wise independent family of hash functions.

Note. If $|B|$ is not prime or $|A|>|B|$ more ideas are required.

Linear Sketches

- A sketch algorithm stores a random matrix $Z \in \mathbb{R}^{k \times n}$ where $k \ll n$ and computes projection $Z f$ of the frequency vector.
- Can be computed incrementally:
- Suppose we have sketch $Z f$ of current frequency vector f.
- If we see an occurrence of i, the new frequency vector is $f^{\prime}=f+e_{i}$
- Can update sketch be just adding i column of Z to $Z f$:

$$
Z f^{\prime}=Z\left(f+e_{i}\right)=Z f+Z e_{i}=Z f+(i \text {-th column of } Z)
$$

- Useful? Need to choose random matrices such that relevant properties of f can be estimated with high probability from $Z f$.

Outline

F_{2} Estimation

Distinct Elements

- Problem: Construct an (ϵ, δ) approximation for $F_{2}=\sum_{i} f_{i}^{2}$
- Algorithm:
- Let $Z \in\{-1,1\}^{k \times n}$ where entries of each row are 4 -wise independent and rows are independent.
- Compute $Z f$ and average squared entries appropriately.
- Analysis:
- Let $s=z$.f be an entry of $Z f$ where z is a row of Z.
- Lemma: $\mathbb{E}\left[s^{2}\right]=F_{2}$
- Lemma: $\mathbb{V}\left[s^{2}\right] \leq 4 F_{2}^{2}$

Expectation Lemma

- $s=z . f$ where $z_{i} \in_{R}\{-1,1\}$ are 4-wise independent.
- Then

$$
\mathbb{E}\left[s^{2}\right]=\mathbb{E}\left[\sum_{i, j \in[n]} z_{i} z_{j} f_{i} f_{j}\right]=\sum_{i, j \in[n]} f_{i} f_{j} \mathbb{E}\left[z_{i} z_{j}\right]=\sum_{i \in[n]} f_{i}^{2}
$$

since $\mathbb{E}\left[z_{i} z_{j}\right]=0$ unless $i=j$,

Variance Lemma

- $\mathbb{E}\left[z_{i} z_{j} z_{k} z_{l}\right]=0$ unless $(i, k)=(j, l),(i, j)=(k, I)$ or $(i, j)=(I, k)$
- Then

$$
\begin{aligned}
\mathbb{V}\left[s^{2}\right]=\mathbb{E}\left[s^{4}\right]-\mathbb{E}\left[s^{2}\right]^{2} & =\sum_{i} f_{i}^{4}+6 \sum_{i<j} f_{i}^{2} f_{j}^{2}-\left(\sum_{i \in[n]} f_{i}^{2}\right)^{2} \\
& =4 \sum_{i<j} f_{i}^{2} f_{j}^{2} \\
& \leq 4 F_{2}^{2}
\end{aligned}
$$

Averaging "Appropriately"

- Group entries of the sketch into $a=O\left(\log \delta^{-1}\right)$ groups of $b=12 \epsilon^{-2}$
- Let $Y_{1}, Y_{2}, \ldots, Y_{a}$ be the average of squared entries in each group.

$$
\begin{gathered}
\mathbb{E}\left[Y_{i}\right]=F_{2} \\
\mathbb{V}\left[Y_{i}\right] \leq 4 F_{2}^{2} / b
\end{gathered}
$$

- By Chebychev, $\mathbb{P}\left[\left|Y_{i}-F_{2}\right| \geq \epsilon F_{2}\right] \leq \frac{4 F_{2}^{2}}{b\left(\epsilon F_{2}\right)^{2}}=1 / 3$
- By Chernoff, median $\left(Y_{1}, \ldots, Y_{a}\right)$ is a (ϵ, δ) approximation of F_{2}.

Extension to Estimating ℓ_{p}

- The ℓ_{p} norm is defined as $\ell_{p}(f)=\left(\sum_{i}\left|f_{i}\right|^{p}\right)^{1 / p}$
- A distribution D is p-stable if given $X, Y \sim D$ and $a, b \in \mathbb{R}$ then

$$
a X+b Y \sim\left(a^{p}+b^{p}\right)^{1 / p} D
$$

- E.g., Cauchy and Gaussian distributions are 1 and 2-stable:

$$
\operatorname{Cauchy}(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}} \quad \operatorname{Gaussian}(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2} / 2}
$$

- If entries of matrix $z_{i . j} \sim D$ are p stable, then projection entries:

$$
s \sim \ell_{p}(f) D
$$

- For $p \in(0,2]$, can (ϵ, δ) estimate ℓ_{p} in $O\left(\epsilon^{-2} \operatorname{polylog}(n, m)\right)$ space.

Outline

F_{2} Estimation

Distinct Elements

Distinct Elements

- Problem: Construct an (ϵ, δ) approximation for $F_{0}=\sum_{i} f_{i}^{0}$
- Simpler problem: For given $T>0$, with probability $1-\delta$ distinguish between $F_{0}>(1+\epsilon) T$ and $F_{0}<(1-\epsilon) T$
- If we can solve simpler problem, can solve original problem by trying $O\left(\epsilon^{-1} \log n\right)$ values of T

$$
T=1,(1+\epsilon),(1+\epsilon)^{2}, \ldots, n
$$

- Algorithm:
- Choose random sets $S_{1}, S_{2}, \ldots, S_{k} \subset[n]$ where $\mathbb{P}\left[i \in S_{j}\right]=1 / T$
- Compute $s_{j}=\sum_{i \in s_{j}} f_{i}$
- If at least k / e of the s_{j} are zero, output $F_{0}<(1-\epsilon) T$
- Analysis:
- If $F_{0}>(1+\epsilon) T, \mathbb{P}\left[s_{j}=0\right]<1 / e-\epsilon / 3$
- If $F_{0}<(1-\epsilon) T, \mathbb{P}\left[s_{j}=0\right]>1 / e+\epsilon / 3$
- Chernoff: $k=O\left(\epsilon^{-2} \log \delta^{-1}\right)$ ensures correctness with prob. $1-\delta$.

Analysis

- Suppose T is large and ϵ is small:

$$
\mathbb{P}\left[s_{j}=0\right]=(1-1 / T)^{F_{0}} \approx e^{-F_{0} / T}
$$

- If $F_{0}>(1+\epsilon) T$,

$$
e^{-F_{0} / T} \leq e^{-(1+\epsilon)} \leq e^{-1}-\epsilon / 3
$$

- If $F_{0}<(1-\epsilon) T$,

$$
e^{-F_{0} / T} \geq e^{-(1-\epsilon)} \geq e^{-1}+\epsilon / 3
$$

