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Concentration Bounds
Theorem (Markov)
Let X be a non-negative random variable with expectation µ. For t > 0,

P [X ≥ tµ] ≤ 1/t

Theorem (Chebyshev)
Let X be a random variable with expectation µ. Then for t > 0,

P [|X − µ| ≥ δµ] ≤ V [X ]

(δµ)2

Theorem (Chernoff)
Let X1, . . . ,Xt be i.i.d. random variables with range [0, 1] and
expectation µ. Then, if X = 1

t

∑
i Xi and 1 > δ > 0,

P [|X − µ| ≥ δµ] ≤ 2 exp

(
−µtδ2

3

)
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Chernoff Corollary

Corollary (Chernoff)
Let X1, . . . ,Xt be i.i.d. random variables with range [0, c] and
expectation µ. Then, if X = 1

t

∑
i Xi and 1 > δ > 0,

P [|X − µ| ≥ δµ] ≤ 2 exp

(
−µtδ2

3c

)

I For i ∈ [t], let Yi = Xi/c . Note that Yi has expectation µ/c .

I Then,

P [|X − µ| ≥ δµ] = P [|Y − µ/c | ≥ δµ/c] ≤ 2 exp

(
−µtδ2

3c

)
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Today’s Set-Up

I Stream: m elements from universe [n] = {1, 2, . . . , n}, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 103, 17, 5, 4, . . . , 1〉

I Let fi be the frequency of i in the stream. The “frequency vector” is

f = (f1, . . . , fn)
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Approximate Median

I Let S = {x1, x2, . . . , xm} and define rank(y) = |{x ∈ S : x ≤ y}|.
For simplicity suppose elements in S are distinct.

I Problem: Find an ε-approximate median of S , i.e., y such that

m/2− εm < rank(y) < m/2 + εm

I Algorithm: Sample t values from S (with replacement) and return
the median of the sampled values.

I Lemma: If t = 7ε−2 log(2δ−1) then the algorithm returns an
ε-median with probability 1− δ.

I We’ll later present an algorithm with smaller space.
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Median Analysis

I Partition S into 3 groups:

SL = {x ∈ S : rank(x) ≤ m/2− εm}
SM = {x ∈ S : m/2− εm < rank(x) < m/2 + εm}
SU = {x ∈ S : rank(x) ≥ m/2 + εm}

I If less than t/2 elements from both SL and SU are present in sample
then the median of the sample is an ε-approximate median.

I Let Xi = 1 if i-th sample if in SL and 0 otherwise. Let X =
∑

i Xi .
Assume ε < 1/10. By Chernoff bound, if t > 7ε−2 log(2δ−1)

P [X ≥ t/2] ≤ P [X ≥ (1 + ε)E [X ]] ≤ e−ε
2(1/2−ε)t/3 ≤ δ/2

I Similarly, there are ≥ t/2 elements from SU with probability ≤ δ/2.

I By the union bound, with probability at least 1− δ there are less
than t/2 elements chosen from both SL and SU .
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Reservoir Sampling

I Problem: Find uniform sample s from a stream if we don’t know m

I Algorithm:
I Initially s = x1
I On seeing the t-th element, s ← xt with probability 1/t

I Analysis:
I What’s the probability that s = xi at some time t ≥ i?

P [s = xi ] =
1

i
×

(
1− 1

i + 1

)
× . . .×

(
1− 1

t

)
=

1

t

I To get k samples we use O(k log n) bits of space.
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AMS Sampling

I Problem: Estimate
∑

i∈[n] g(fi ) for any function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Correct Expectation:

E [X ] =
∑
i

P [xJ = i ]E [X |xJ = i ]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi )

I For high confidence: Compute t estimators in parallel and average.
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Example: Frequency Moments (a)

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

E [X ] = Fk

I Exercise: 0 ≤ X ≤ mkf∗
k−1 where f∗ = maxi fi .

I Repeat t times and let X̂ be the average value. By Chernoff,

P
[
|X̂ − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3mkf∗
k−1

)
I Hence, taking t = 3mkf∗

k−1 log(2δ−1)
ε2Fk

ensures P
[
|X̂ − Fk | ≥ εFk

]
≤ δ.

I Lemma: mf∗
k−1/Fk ≤ n1−1/k .

I Thm: In O(kn1−1/kε−2 log δ−1 log(nm)) space we find an (ε, δ)
approximation for Fk .
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E [X ] = Fk

I Exercise: 0 ≤ X ≤ mkf∗
k−1 where f∗ = maxi fi .

I Repeat t times and let X̂ be the average value. By Chernoff,

P
[
|X̂ − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3mkf∗
k−1

)
I Hence, taking t = 3mkf∗

k−1 log(2δ−1)
ε2Fk

ensures P
[
|X̂ − Fk | ≥ εFk

]
≤ δ.

I Lemma: mf∗
k−1/Fk ≤ n1−1/k .

I Thm: In O(kn1−1/kε−2 log δ−1 log(nm)) space we find an (ε, δ)
approximation for Fk .
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Example: Frequency Moments (b)

Lemma
mf∗

k−1/Fk ≤ n1−1/k .

Proof.

I Exercise: Fk ≥ n(m/n)k . (Hint: Use convexity of g(x) = xk .)

I Case 1: Suppose f∗
k ≤ n(m/n)k . Then,

mf∗
k−1

Fk
≤ mn1−1/k(m/n)k−1

n(m/n)k
= n1−1/k

I Case 2: Suppose f∗
k ≥ n(m/n)k . Then,

mf∗
k−1

Fk
≤ mf∗

k−1

f∗
k

=
m

f∗
≤ m

n1/k(m/n)
= n1−1/k
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