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Theorem (Chernoff)
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Today's Set-Up

» Stream: m elements from universe [n] = {1,2,...,n}, e.g.,
(x1,%2, .., Xm) = (3,5,103,17,5,4,...,1)
> Let f; be the frequency of i in the stream. The “frequency vector” is

f=(,....f)
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Approximate Median

Let S = {x1,x,...,Xm} and define rank(y) = |[{x € S: x < y}|.
For simplicity suppose elements in S are distinct.

Problem: Find an e-approximate median of S, i.e., y such that
m/2 —em < rank(y) < m/2 +em

Algorithm: Sample t values from S (with replacement) and return
the median of the sampled values.

Lemma: If t = 7e~?log(20~1) then the algorithm returns an
e-median with probability 1 — 4.

We'll later present an algorithm with smaller space.
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» Partition S into 3 groups:

St = {xe€S:rank(x) < m/2 —em}
Sy = {x€S5:m/2—em <rank(x) < m/2 + em}
Sy = {xe€S:rank(x) > m/2+em}

If less than t/2 elements from both S; and Sy are present in sample
then the median of the sample is an e-approximate median.

Let X; = 1 if i-th sample if in S; and 0 otherwise. Let X =" Xi.
Assume € < 1/10. By Chernoff bound, if t > 7e =2 log(251)

P[X > t/2] <P[X > (1+ E[X]] < e < 1/2-9t/3 < 5/2

Similarly, there are > t/2 elements from Sy with probability < 6/2.

By the union bound, with probability at least 1 — ¢ there are less
than t/2 elements chosen from both S; and Sy.
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Reservoir Sampling

» Problem: Find uniform sample s from a stream if we don't know m
» Algorithm:

> Initially s = xy

> On seeing the t-th element, s +— x; with probability 1/t

> Analysis:
» What's the probability that s = x; at some time t > i?

P[SZX:']:%X(1*%)X...X<lf%):%

> To get k samples we use O(k log n) bits of space.
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AMS Sampling

> Problem: Estimate ;. (, g(f;) for any function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=W=J:x=x1}

Output X = m(g(r) — g(r—1))

» Correct Expectation:

E[X] ZP[XJ =i E[X|x; = i]

f; i omg(r) — g(r —1
Zm<2 (g(r) ﬁg( )))

i r=1

Zg(f;)

» For high confidence: Compute t estimators in parallel and average.
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Example: Frequency Moments (a)

>

Frequency Moments: Define Fy, =, fk for k € {1,2,3,...}

» Use AMS estimator with X = m(rk — (r — 1)¥).

E[X] = Fx

Exercise: 0 < X < mkﬂk—1 where f, = max; f;.

Repeat t times and let X be the average value. By Chernoff,

e tFkEz
IP’[X—F >6F]<2ex ()
X =Fil 2 chi] < 200 =2

k—1 —1 A
Hence, taking t = %}ffug) ensures PP {|X — Fy| > eFk} <.

Lemma: mf*k_l/Fk < pl-lk,

> Thm: In O(kn'=Y/ke=2log 6~ log(nm)) space we find an (e, §)

approximation for Fy.
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Example: Frequency Moments (b)
Lemma
mf 571/ F < nt-1/k,

Proof.
> Exercise: Fx > n(m/n)*. (Hint: Use convexity of g(x) = x*.)
» Case 1: Suppose £,X < n(m/n)k. Then,

mf 7t mnt Y5 (m/n)< ! _ -1/
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» Case 2: Suppose £,* > n(m/n)k. Then,

k—1 k—1
mf, < mf,
Fy -
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