Question 1. Consider a stream of \(n + 1\) numbers where each number is in the set \([n]\). Design a small space algorithm that returns an element that occurs at least twice in the stream. **Hint:** Use \(\ell_1\) sampling and consider the vector \(g = (f_1 - 1, f_2 - 1, \ldots, f_n - 1)\) where \(f_i\) is the number of occurrences of \(i\).

Question 2. Consider a stream that consists of the \(m\) (distinct) edges of a graph on \(n\) nodes. Let \(T\) be the number of triangles in the graph. Design a small space algorithm that approximate \(T\) up to additive error \(\epsilon mn\). **Hint:** Use \(\ell_0\) sampling on some vector \(g\) of length \((n^3)\).

Question 3. In this question the goal is to modify the proof for sparse recovery in the \(\ell_1\) norm, to prove a similar result for the \(\ell_2\) norm. Some details will be similar but you should still include them.

1. Using the Count-Sketch algorithm with the appropriate width and depth parameters, show that it is possible find \(\tilde{f} = (\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_n)\) such that with probability at least \(1 - \frac{1}{n^2}\),

\[
\forall i \in [n], \quad |f_i - \tilde{f}_i|^2 \leq \frac{2\text{Err}_2^k(f)}{k}
\]

where \(\text{Err}_2^k(f)\) is the sum of the \(n - k\) smallest elements of \(|f_1|^2, |f_2|^2, \ldots, |f_n|^2\).

2. Show that if \(\tilde{f}\) satisfies Eq. 1 then

\[
\|f - \tilde{g}\|_2^2 \leq (1 + 9\epsilon) \min_{g: \|g\|_0 \leq k} \|f - g\|_2^2
\]

where \(\tilde{g}\) is the vector formed by zero-ing out all but the \(k\) largest elements of \(\tilde{f}\).

Question 4. Design an algorithm for estimating \(F_2(f)\) based on Count-Sketch. **Hint:** Consider summing the squares of the entries of a row of the Count-Sketch table. What’s the expectation and variance?

Question 5. We say \(g = (g_1, g_2, \ldots, g_n)\) is a \(k\)-bucket histogram if there exists at most \(k - 1\) values of \(i \in [n - 1]\) such that \(g_i \neq g_{i+1}\). In this question, we want to find a \(k\)-bucket histogram that approximates a vector \(f = (f_1, f_2, \ldots, f_n)\). Suppose \(n\) is a power of two.

1. Suppose that the entries of \(f\) are presented in order. Design a small-space algorithm that finds a \(k\)-bucket histogram \(\tilde{g}\) such that

\[
\|f - \tilde{g}\|_\infty \leq (1 + \epsilon) \min_{g: \|g\|_0 \leq k} \|f - g\|_\infty,
\]

where \(\|x\|_\infty = \max_{i \in [n]} |x_i|\). You may assume that all \(f_i \in \{0, 1, \ldots, w\}\).

2. Suppose that the entries of \(f\) are presented in order. Design a small-space algorithm that finds a \(k\)-bucket histogram \(\tilde{g}\) such that

\[
\|f - \tilde{g}\|_2 \leq (1 + \epsilon) \min_{g: \|g\|_0 \leq k} \|f - g\|_2.
\]
Hint: First design a non-streaming dynamic programming algorithm for this problem based on computing $C[b,t]$ for $b \in [k], t \in [n]$ where $C[b,t]$ is the minimum error achievable when representing (f_1, f_2, \ldots, f_t) by a b-bucket histogram. How could you save space if $C[b,t] \approx C[b,t+1] \approx \cdots \approx C[b,t+r]$, e.g., if $C[b,t+r]/C[b,t] \leq (1+\gamma)$?

(3) Haar wavelets are closely connected to histograms. Prove that a k-bucket histogram is $2k \log_2 n$-sparse in the Haar basis. Prove that a vector that is k-sparse in the Haar basis is a $(3k+1)$-bucket histogram.