CMPSCI 711: "Really Advanced Algorithms" Lecture 8 – Probabilistic Method and Lovász Local Lemma

Andrew McGregor

Last Compiled: February 25, 2009

# Outline

Probabilistic Method

Lovász Local Lemma

### Probabilistic Method

It's obvious that  $\mathbb{P}[X \ge r] > 0$  or  $\mathbb{E}[X] \ge r$  implies that the event  $\{X \ge r\}$  can happen. But it's very powerful!

## Probabilistic Method

It's obvious that  $\mathbb{P}[X \ge r] > 0$  or  $\mathbb{E}[X] \ge r$  implies that the event  $\{X \ge r\}$  can happen. But it's very powerful!

Examples we've already seen...

- Any graph has a cut of size at least m/2
- ► For any collection of m clauses, it is possible to satisfy (1-2<sup>-k</sup>)m of the clauses if each clause has at least k literals.
- For any collection of subsets A<sub>1</sub>,..., A<sub>n</sub> ⊂ [n], it is possible to partition [n] into A and B such that

$$\max_{i\in[n]} ||A_i \cap B| - |A_i \cap C|| \le 4\sqrt{n\ln n}$$

## k-SAT

► Input: A CNF formula consisting of *m* clauses in *n* Boolean variables x<sub>1</sub>,..., x<sub>n</sub>, e.g.,

$$(x_1 \lor x_2 \lor \overline{x}_3) \land \ldots \land (x_9 \lor x_{10} \lor x_{21})$$

where  $\bar{x}_i = 1 - x_i$ .

Problem: Is there a satisfying assignment of the formula?

# k-SAT

► Input: A CNF formula consisting of *m* clauses in *n* Boolean variables x<sub>1</sub>,..., x<sub>n</sub>, e.g.,

$$(x_1 \lor x_2 \lor \overline{x}_3) \land \ldots \land (x_9 \lor x_{10} \lor x_{21})$$

where  $\bar{x}_i = 1 - x_i$ .

Problem: Is there a satisfying assignment of the formula?

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

### Outline

Probabilistic Method

Lovász Local Lemma



Suppose we have *n* "bad" events  $B_1, \ldots, B_n$ .

- Suppose we have n "bad" events  $B_1, \ldots, B_n$ .
- To show that it is possible for no bad events to occur it is sufficient to find some random process where

$$\mathbb{P}\left[\cap_{i\in[n]}\bar{B}_i\right]>0$$

- Suppose we have n "bad" events  $B_1, \ldots, B_n$ .
- To show that it is possible for no bad events to occur it is sufficient to find some random process where

$$\mathbb{P}\left[\cap_{i\in[n]}\bar{B}_i\right]>0$$

▶ E.g., if  $B_i$  are independent and max  $\mathbb{P}[B_i] < 1$ , we are good.

- Suppose we have n "bad" events  $B_1, \ldots, B_n$ .
- To show that it is possible for no bad events to occur it is sufficient to find some random process where

$$\mathbb{P}\left[\cap_{i\in[n]}\bar{B}_i\right]>0$$

► E.g., if B<sub>i</sub> are independent and max P [B<sub>i</sub>] < 1, we are good.</li>
► E.g., if ∑<sub>i</sub> P [B<sub>i</sub>] < 1, we are good.</li>

- Suppose we have n "bad" events  $B_1, \ldots, B_n$ .
- To show that it is possible for no bad events to occur it is sufficient to find some random process where

$$\mathbb{P}\left[\cap_{i\in[n]}\bar{B}_i\right]>0$$

- ▶ E.g., if  $B_i$  are independent and max  $\mathbb{P}[B_i] < 1$ , we are good.
- E.g., if  $\sum_{i} \mathbb{P}[B_i] < 1$ , we are good.
- What if probabilities aren't tiny and events not independent?

### Lovász Local Lemma

#### Theorem

Consider events  $B_1, ..., B_n$  with  $B_i$  independent of  $\{B_j : j \notin \Gamma(i)\}$ . Suppose that there exist  $x_i \in [0, 1]$  for  $i \in [n]$  such that

$$\mathbb{P}\left[B_i\right] \leq x_i \prod_{j \in \Gamma(i)} (1-x_j)$$

Then,  $\mathbb{P}\left[\cap_{i\in[n]}G_i\right] \geq \prod_{i\in[n]}(1-x_i)$  where  $G_i = \overline{B}_i$ .

## Lovász Local Lemma

#### Theorem

Consider events  $B_1, \ldots, B_n$  with  $B_i$  independent of  $\{B_j : j \notin \Gamma(i)\}$ . Suppose that there exist  $x_i \in [0, 1]$  for  $i \in [n]$  such that

$$\mathbb{P}\left[B_i\right] \leq x_i \prod_{j \in \Gamma(i)} (1-x_j)$$

Then, 
$$\mathbb{P}\left[\cap_{i\in[n]}G_i\right] \geq \prod_{i\in[n]}(1-x_i)$$
 where  $G_i = \overline{B}_i$ .

#### Corollary

Let  $B_1, \ldots, B_n$  be events with  $\mathbb{P}[B_i] \leq p$  and  $B_i$  independent of all but at most d other events, then  $\mathbb{P}[\bigcap_{i \in [n]} G_i] > 0$  if  $ep(d+1) \leq 1$ .

# Lovász Local Lemma

#### Theorem

Consider events  $B_1, \ldots, B_n$  with  $B_i$  independent of  $\{B_j : j \notin \Gamma(i)\}$ . Suppose that there exist  $x_i \in [0, 1]$  for  $i \in [n]$  such that

$$\mathbb{P}\left[B_i\right] \leq x_i \prod_{j \in \Gamma(i)} (1-x_j)$$

Then, 
$$\mathbb{P}\left[\cap_{i\in[n]}G_i\right] \geq \prod_{i\in[n]}(1-x_i)$$
 where  $G_i = \overline{B}_i$ .

#### Corollary

Let  $B_1, \ldots, B_n$  be events with  $\mathbb{P}[B_i] \leq p$  and  $B_i$  independent of all but at most d other events, then  $\mathbb{P}[\bigcap_{i \in [n]} G_i] > 0$  if  $ep(d+1) \leq 1$ .

#### Proof.

Use Lovász Local Lemma with  $x_i = 1/(d+1)$  for all  $i \in [n]$ .

▶ Sufficient to prove  $\mathbb{P}[B_i | \cap_{j \in S} G_j] \le x_i$  for any  $S \subset [n], i \notin S$ :

 $\mathbb{P}\left[\cap_{i\in[n]}G_i\right] = (1-\mathbb{P}\left[B_1\right])(1-\mathbb{P}\left[B_2|G_1\right])\dots(1-\mathbb{P}\left[B_n|\cap_{i\in[n-1]}B_i\right])$ 

▶ Sufficient to prove  $\mathbb{P}[B_i | \cap_{j \in S} G_j] \le x_i$  for any  $S \subset [n], i \notin S$ :

 $\mathbb{P}\left[\cap_{i\in[n]}G_i\right] = (1-\mathbb{P}\left[B_1\right])(1-\mathbb{P}\left[B_2|G_1\right])\dots(1-\mathbb{P}\left[B_n|\cap_{i\in[n-1]}B_i\right])$ 

▶ Proof by induction on k = |S|: Base case k = 0 is immediate

▶ Sufficient to prove  $\mathbb{P}[B_i | \cap_{j \in S} G_j] \le x_i$  for any  $S \subset [n], i \notin S$ :

 $\mathbb{P}\left[\cap_{i\in[n]}G_i\right] = (1-\mathbb{P}\left[B_1\right])(1-\mathbb{P}\left[B_2|G_1\right])\dots(1-\mathbb{P}\left[B_n|\cap_{i\in[n-1]}B_i\right])$ 

- ▶ Proof by induction on k = |S|: Base case k = 0 is immediate
- ▶ Inductive Step: Let  $S_1 = \{j \in S : j \in \Gamma(i)\}$  and  $S_2 = S \setminus S_1$ :

$$\mathbb{P}\left[B_{i}|\cap_{j\in S} G_{j}\right] = \frac{\mathbb{P}\left[B_{i}\cap\left(\bigcap_{j\in S_{1}}G_{j}\right)|\cap_{j\in S_{2}}G_{j}\right]}{\mathbb{P}\left[\left(\bigcap_{j\in S_{1}}G_{j}\right)|\cap_{j\in S_{2}}G_{j}\right]}$$

▶ Sufficient to prove  $\mathbb{P}[B_i | \cap_{j \in S} G_j] \leq x_i$  for any  $S \subset [n], i \notin S$ :

 $\mathbb{P}\left[\cap_{i\in[n]}G_i\right] = (1-\mathbb{P}\left[B_1\right])(1-\mathbb{P}\left[B_2|G_1\right])\dots(1-\mathbb{P}\left[B_n|\cap_{i\in[n-1]}B_i\right])$ 

- ▶ Proof by induction on k = |S|: Base case k = 0 is immediate
- ▶ Inductive Step: Let  $S_1 = \{j \in S : j \in \Gamma(i)\}$  and  $S_2 = S \setminus S_1$ :

$$\mathbb{P}\left[B_i | \cap_{j \in S} G_j\right] = \frac{\mathbb{P}\left[B_i \cap \left(\cap_{j \in S_1} G_j\right) | \cap_{j \in S_2} G_j\right]}{\mathbb{P}\left[\left(\cap_{j \in S_1} G_j\right) | \cap_{j \in S_2} G_j\right]}$$

Numerator: By independence assumptions

 $\mathbb{P}\left[B_{i} \cap \left(\cap_{j \in S_{1}} G_{j}\right) \mid \cap_{j \in S_{2}} G_{j}\right] \leq \mathbb{P}\left[B_{i} \mid \cap_{j \in S_{2}} G_{j}\right] = \mathbb{P}\left[B_{i}\right]$ 

▶ Sufficient to prove  $\mathbb{P}[B_i | \cap_{j \in S} G_j] \leq x_i$  for any  $S \subset [n], i \notin S$ :

 $\mathbb{P}\left[\cap_{i\in[n]}G_i\right] = (1-\mathbb{P}\left[B_1\right])(1-\mathbb{P}\left[B_2|G_1\right])\dots(1-\mathbb{P}\left[B_n|\cap_{i\in[n-1]}B_i\right])$ 

- ▶ Proof by induction on k = |S|: Base case k = 0 is immediate
- ► Inductive Step: Let  $S_1 = \{j \in S : j \in \Gamma(i)\}$  and  $S_2 = S \setminus S_1$ :  $\mathbb{P}\left[B_i \cap (\bigcap_{i \in S_1} G_i) \mid \bigcap_{i \in S_2} G_i\right]$

$$\mathbb{P}\left[B_{i}\right|\cap_{j\in S} G_{j}\right] = \frac{\mathbb{I}\left[B_{i}\right|\left(\bigcap_{j\in S_{1}}G_{j}\right)\left|\bigcap_{j\in S_{2}}G_{j}\right]}{\mathbb{P}\left[\left(\bigcap_{j\in S_{1}}G_{j}\right)\left|\bigcap_{j\in S_{2}}G_{j}\right]}$$

Numerator: By independence assumptions

 $\mathbb{P}\left[B_{i}\cap\left(\cap_{j\in S_{1}}G_{j}\right)|\cap_{j\in S_{2}}G_{j}\right]\leq\mathbb{P}\left[B_{i}\right|\cap_{j\in S_{2}}G_{j}\right]=\mathbb{P}\left[B_{i}\right]$ 

▶ Denominator: Let  $S_1 = \{j_1, \ldots, j_r\}$  &  $T_k = S_2 \cup \{j_1, \ldots, j_k\}$ 

$$\mathbb{P}\left[G_{j_1} \cap \ldots \cap G_{j_r} | \cap_{j \in S_2} G_j\right] = \prod_{k=0}^{r-1} \left(1 - \mathbb{P}\left[B_{j_{k+1}} | \cap_{j \in T_k} G_j\right]\right)$$
$$\geq \prod_{j \in \Gamma(i)} (1 - x_j) \ge \mathbb{P}\left[B_i\right] / x_i$$

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

Proof.

• Pick each  $x_i$  value uniformly and independently from  $\{0, 1\}$ .

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

- Pick each  $x_i$  value uniformly and independently from  $\{0, 1\}$ .
- ▶ Let B<sub>j</sub> be the event that the *j*-th clause is unsatisfied.

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

- Pick each  $x_i$  value uniformly and independently from  $\{0, 1\}$ .
- ▶ Let *B<sub>j</sub>* be the event that the *j*-th clause is unsatisfied.
- By previous analysis:  $p = \mathbb{P}[B_j] = 2^{-k}$

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

- Pick each  $x_i$  value uniformly and independently from  $\{0, 1\}$ .
- ▶ Let *B<sub>j</sub>* be the event that the *j*-th clause is unsatisfied.
- By previous analysis:  $p = \mathbb{P}[B_j] = 2^{-k}$
- ▶ B<sub>j</sub> is independent of all but at most d = k(2<sup>k/50</sup> 1) other events.

#### Theorem

If each clause contains exactly  $k \ge 3$  literals and each variable appears (complemented or un-complemented) in at most  $2^{k/50}$  clauses then the formula can always be satisfied.

- Pick each  $x_i$  value uniformly and independently from  $\{0, 1\}$ .
- ▶ Let *B<sub>j</sub>* be the event that the *j*-th clause is unsatisfied.
- By previous analysis:  $p = \mathbb{P}[B_j] = 2^{-k}$
- ▶ B<sub>j</sub> is independent of all but at most d = k(2<sup>k/50</sup> 1) other events.
- ▶ Since  $ep(d + 1) \le 1$  for  $k \ge 3$ , using LLL:  $\mathbb{P}\left[\cap_{i \in [n]} G_i\right] > 0$