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Probabilistic Method

It’s obvious that P [X ≥ r ] > 0 or E [X ] ≥ r implies that the event
{X ≥ r} can happen. But it’s very powerful!

Examples we’ve already seen. . .

I Any graph has a cut of size at least m/2

I For any collection of m clauses, it is possible to satisfy
(1− 2−k)m of the clauses if each clause has at least k literals.

I For any collection of subsets A1, . . . , An ⊂ [n], it is possible to
partition [n] into A and B such that

max
i∈[n]

∣∣|Ai ∩ B| − |Ai ∩ C |
∣∣ ≤ 4

√
n ln n
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k-SAT

I Input: A CNF formula consisting of m clauses in n Boolean
variables x1, . . . , xn, e.g.,

(x1 ∨ x2 ∨ x̄3) ∧ . . . ∧ (x9 ∨ x10 ∨ x21)

where x̄i = 1− xi .

I Problem: Is there a satisfying assignment of the formula?

Theorem
If each clause contains exactly k ≥ 3 literals and each variable
appears (complemented or un-complemented) in at most 2k/50

clauses then the formula can always be satisfied.
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Warm up. . .

I Suppose we have n “bad” events B1, . . . , Bn.

I To show that it is possible for no bad events to occur it is
sufficient to find some random process where

P
[
∩i∈[n]B̄i

]
> 0

I E.g., if Bi are independent and max P [Bi ] < 1, we are good.

I E.g., if
∑

i P [Bi ] < 1, we are good.

I What if probabilities aren’t tiny and events not independent?
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Lovász Local Lemma

Theorem
Consider events B1, . . . , Bn with Bi independent of {Bj : j 6∈ Γ(i)}.
Suppose that there exist xi ∈ [0, 1] for i ∈ [n] such that

P [Bi ] ≤ xi

∏
j∈Γ(i)

(1− xj)

Then, P
[
∩i∈[n]Gi

]
≥
∏

i∈[n](1− xi ) where Gi = B̄i .

Corollary

Let B1, . . . , Bn be events with P [Bi ] ≤ p and Bi independent of all
but at most d other events, then P

[
∩i∈[n]Gi

]
> 0 if ep(d + 1) ≤ 1.

Proof.
Use Lovász Local Lemma with xi = 1/(d + 1) for all i ∈ [n].
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Proof of Lovász Local Lemma
I Sufficient to prove P [Bi | ∩j∈S Gj ] ≤ xi for any S ⊂ [n], i 6∈ S :

P
[
∩i∈[n]Gi

]
= (1−P [B1])(1−P [B2|G1]) . . . (1−P

[
Bn| ∩i∈[n−1] Bi

]
)

I Proof by induction on k = |S |: Base case k = 0 is immediate
I Inductive Step: Let S1 = {j ∈ S : j ∈ Γ(i)} and S2 = S \ S1:

P [Bi | ∩j∈S Gj ] =
P [Bi ∩ (∩j∈S1Gj) | ∩j∈S2 Gj ]

P [(∩j∈S1Gj) | ∩j∈S2 Gj ]

I Numerator: By independence assumptions

P [Bi ∩ (∩j∈S1Gj) | ∩j∈S2 Gj ] ≤ P [Bi | ∩j∈S2 Gj ] = P [Bi ]

I Denominator: Let S1 = {j1, . . . , jr} & Tk = S2 ∪ {j1, . . . , jk}

P [Gj1 ∩ . . . ∩ Gjr | ∩j∈S2 Gj ] =
r−1∏
k=0

(
1− P

[
Bjk+1

| ∩j∈Tk
Gj

])
≥

∏
j∈Γ(i)

(1− xj) ≥ P [Bi ] /xi
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Return to k-SAT

Theorem
If each clause contains exactly k ≥ 3 literals and each variable
appears (complemented or un-complemented) in at most 2k/50

clauses then the formula can always be satisfied.

Proof.

I Pick each xi value uniformly and independently from {0, 1}.
I Let Bj be the event that the j-th clause is unsatisfied.

I By previous analysis: p = P [Bj ] = 2−k

I Bj is independent of all but at most d = k(2k/50 − 1) other
events.

I Since ep(d + 1) ≤ 1 for k ≥ 3, using LLL: P
[
∩i∈[n]Gi

]
> 0
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