Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle
Lazy Select

We have a set S of $n = 2k$ distinct numbers and want to find the k-th smallest element.
Lazy Select

We have a set S of $n = 2k$ distinct numbers and want to find the k-th smallest element.

Algorithm

1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
Lazy Select

We have a set S of $n = 2k$ distinct numbers and want to find the k-th smallest element.

Algorithm

1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
2. Sort R and find a and b such that

 $$ \text{rank}_R(a) = kn^{-1/4} - \sqrt{n} \quad \text{and} \quad \text{rank}_R(b) = kn^{-1/4} + \sqrt{n} $$

 where $\text{rank}_X(x) = t$ if x is the t-th smallest element in X.

3. Compute $\text{rank}_S(a)$ and $\text{rank}_S(b)$: Output FAIL if $k < \text{rank}_S(a)$ or $k > \text{rank}_S(b)$

4. Let $P = \{ i \in S : a \leq y \leq b \}$: Output FAIL if $|P| \geq 4n^{3/4}$

5. Return $(k - \text{rank}_S(a) + 1)$-th smallest element from P
Lazy Select

We have a set S of $n = 2k$ distinct numbers and want to find the k-th smallest element.

Algorithm

1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
2. Sort R and find a and b such that
 \[
 \text{rank}_R(a) = kn^{-1/4} - \sqrt{n} \quad \text{and} \quad \text{rank}_R(b) = kn^{-1/4} + \sqrt{n}
 \]
 where \(\text{rank}_X(x) = t \) if x is the t-th smallest element in X.
3. Compute \(\text{rank}_S(a) \) and \(\text{rank}_S(b) \): Output FAIL if
 \[
 k < \text{rank}_S(a) \quad \text{or} \quad k > \text{rank}_S(b)
 \]
4. Let $P = \{ i \in S : a \leq y \leq b \}$: Output FAIL if $|P| \geq 4n^{3/4}$
5. Return \((k - \text{rank}_S(a) + 1) \)-th smallest element from P
Lazy Select

We have a set S of $n = 2k$ distinct numbers and want to find the k-th smallest element.

Algorithm

1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.

2. Sort R and find a and b such that

$$\text{rank}_R(a) = kn^{-1/4} - \sqrt{n} \text{ and } \text{rank}_R(b) = kn^{-1/4} + \sqrt{n}$$

where $\text{rank}_X(x) = t$ if x is the t-th smallest element in X.

3. Compute $\text{rank}_S(a)$ and $\text{rank}_S(b)$: Output FAIL if

$$k < \text{rank}_S(a) \text{ or } k > \text{rank}_S(b)$$

4. Let $P = \{i \in S : a \leq y \leq b\}$: Output FAIL if $|P| \geq 4n^{3/4}$
Lazy Select

We have a set S of $n = 2k$ distinct numbers and want to find the k-th smallest element.

Algorithm

1. Let R be a set of $n^{3/4}$ elements chosen uniformly at random with replacement from S.
2. Sort R and find a and b such that
 \[\text{rank}_R(a) = kn^{-1/4} - \sqrt{n} \text{ and } \text{rank}_R(b) = kn^{-1/4} + \sqrt{n} \]
 where $\text{rank}_X(x) = t$ if x is the t-th smallest element in X.
3. Compute $\text{rank}_S(a)$ and $\text{rank}_S(b)$: Output FAIL if
 \[k < \text{rank}_S(a) \text{ or } k > \text{rank}_S(b) \]
4. Let $P = \{ i \in S : a \leq y \leq b \}$: Output FAIL if $|P| \geq 4n^{3/4}$
5. Return $(k - \text{rank}_S(a) + 1)$-th smallest element from P
Lazy Select: Running Time

Theorem

Running time of Lazy Select is $O(n)$.

Proof.

$O\left(\frac{n^3}{4}\right)$ steps to define R.

$O\left(\frac{n^3}{4} \log n\right)$ steps to sort R and find a and b.

$O(n)$ steps to compute rank $S(a)$ and rank $S(b)$ in S.

$O\left(\frac{n^3}{4} \log n\right)$ steps to sort P and select element.
Lazy Select: Running Time

Theorem
Running time of Lazy Select is $O(n)$.

Proof.

- $O(n^{3/4})$ steps to define R.
Lazy Select: Running Time

Theorem

Running time of Lazy Select is $O(n)$.

Proof.

- $O(n^{3/4})$ steps to define R.
- $O(n^{3/4} \log n)$ steps to sort R and find a and b.
Theorem

Running time of Lazy Select is $O(n)$.

Proof.

- $O(n^{3/4})$ steps to define R.
- $O(n^{3/4} \log n)$ steps to sort R and find a and b.
- $O(n)$ steps to compute $\text{rank}_S(a)$ and $\text{rank}_S(b)$ in S.
Lazy Select: Running Time

Theorem

Running time of Lazy Select is $O(n)$.

Proof.

- $O(n^{3/4})$ steps to define R.
- $O(n^{3/4} \log n)$ steps to sort R and find a and b.
- $O(n)$ steps to compute $\text{rank}_S(a)$ and $\text{rank}_S(b)$ in S.
- $O(n^{3/4} \log n)$ steps to sort P and select element.
Lazy Select: Probability of Being Correct (1/3)

Theorem

With probability $1 - O(n^{-1/4})$, algorithm finds the median.
Theorem
With probability $1 - O(n^{-1/4})$, algorithm finds the median.

Proof.

- If we don’t output FAIL, then we get the answer correct.
Theorem

With probability $1 - O(n^{-1/4})$, *algorithm finds the median.*

Proof.

- If we don’t output FAIL, then we get the answer correct.
- Only three ways in which we fail and we’ll show
 1. $\mathbb{P}[k < \text{rank}_S(a)] \leq O(n^{-1/4})$
 2. $\mathbb{P}[k > \text{rank}_S(b)] \leq O(n^{-1/4})$
 3. $\mathbb{P}[|P| \geq 4n^{3/4}] \leq O(n^{-1/4})$
Claim
\[\mathbb{P} [k < \text{rank}_S(a)] \leq O(n^{-1/4}) \]
Lazy Select: Probability of Being Correct (2/3)

Claim
$$\mathbb{P}[k < \text{rank}_S(a)] \leq O(n^{-1/4})$$

Proof.

- Let u be the k-th smallest element in S
Lazy Select: Probability of Being Correct (2/3)

Claim
\[P[k < \text{rank}_S(a)] \leq O(n^{-1/4}) \]

Proof.

- Let \(u \) be the \(k \)-th smallest element in \(S \)
- Consider choosing \(R \): Let \(X_i = 1 \) if \(i \)-th sample is \(\leq u \) and \(X_i = 0 \) otherwise. \(P[X_i = 1] = k/n \) and \(P[X_i = 0] = 1 - k/n \)
Lazy Select: Probability of Being Correct (2/3)

Claim
\[P[k < \text{rank}_S(a)] \leq O(n^{-1/4}) \]

Proof.

- Let \(u \) be the \(k \)-th smallest element in \(S \).
- Consider choosing \(R \): Let \(X_i = 1 \) if \(i \)-th sample is \(\leq u \) and \(X_i = 0 \) otherwise. \(P[X_i = 1] = k/n \) and \(P[X_i = 0] = 1 - k/n \).
- \(X = \sum_{i \in [n^{3/4}]} X_i = \) number of elements in \(R \) that are at most \(u \).
Lazy Select: Probability of Being Correct (2/3)

Claim
\[\mathbb{P}[k \prec \text{rank}_S(a)] \leq O(n^{-1/4}) \]

Proof.

- Let \(u \) be the \(k \)-th smallest element in \(S \)
- Consider choosing \(R \): Let \(X_i = 1 \) if \(i \)-th sample is \(\leq u \) and \(X_i = 0 \) otherwise. \(\mathbb{P}[X_i = 1] = k/n \) and \(\mathbb{P}[X_i = 0] = 1 - k/n \)
- \(X = \sum_{i \in [n^{3/4}]} X_i \) = number of elements in \(R \) that are at most \(u \).
- \(k \prec \text{rank}_S(a) \) implies \(X < kn^{-1/4} - \sqrt{n} \)
Lazy Select: Probability of Being Correct (2/3)

Claim
\[\mathbb{P}[k < \text{rank}_S(a)] \leq O(n^{-1/4}) \]

Proof.

- Let \(u \) be the \(k \)-th smallest element in \(S \)
- Consider choosing \(R \): Let \(X_i = 1 \) if \(i \)-th sample is \(\leq u \) and \(X_i = 0 \) otherwise. \(\mathbb{P}[X_i = 1] = k/n \) and \(\mathbb{P}[X_i = 0] = 1 - k/n \)
- \(X = \sum_{i \in [n^{3/4}]} X_i \) is number of elements in \(R \) that are at most \(u \).
- \(k < \text{rank}_S(a) \) implies \(X < kn^{-1/4} - \sqrt{n} \)
- \(X \) has binomial distribution:

\[
\mathbb{E}[X] = kn^{-1/4} \quad \text{and} \quad \mathbb{V}[X] = n^{3/4}(k/n)(1 - k/n) = n^{3/4}/4
\]
Lazy Select: Probability of Being Correct (2/3)

Claim
\(\mathbb{P} [k < \text{rank}_S(a)] \leq O(n^{-1/4}) \)

Proof.

- Let \(u \) be the \(k \)-th smallest element in \(S \)
- Consider choosing \(R \): Let \(X_i = 1 \) if \(i \)-th sample is \(\leq u \) and \(X_i = 0 \) otherwise. \(\mathbb{P} [X_i = 1] = k/n \) and \(\mathbb{P} [X_i = 0] = 1 - k/n \)
- \(X = \sum_{i \in \lfloor n^{3/4} \rfloor} X_i \) = number of elements in \(R \) that are at most \(u \).
- \(k < \text{rank}_S(a) \) implies \(X < kn^{-1/4} - \sqrt{n} \)
- \(X \) has binomial distribution:

 \[
 \mathbb{E}[X] = kn^{-1/4} \quad \text{and} \quad \mathbb{V}[X] = n^{3/4}(k/n)(1 - k/n) = n^{3/4}/4
 \]

- Apply Chebyshev bound: \(\mathbb{P} [X < kn^{-1/4} - \sqrt{n}] \) is at most

 \[
 \mathbb{P} \left[|X - \mathbb{E}[X]| < \sqrt{n} \right] \leq \mathbb{P} \left[|X - \mathbb{E}[X]| < 2n^{1/8}\sigma_X \right] = O(n^{-1/4})
 \]
Claim

\[\mathbb{P} \left[|P| \geq 4n^{3/4} \right] \leq O(n^{-1/4}) \]
Lazy Select: Probability of Being Correct (3/3)

Claim
\[\mathbb{P}[|P| \geq 4n^{3/4}] \leq O(n^{-1/4}) \]

Proof.

- If \(|P| \geq 4n^{3/4}\) then either
 \[\text{rank}_S(a) \leq k - 2n^{3/4} \quad \text{or} \quad \text{rank}_S(b) \geq k + 2n^{3/4} - 1 \]
Claim
\[\mathbb{P} \left[|P| \geq 4n^{3/4} \right] \leq O(n^{-1/4}) \]

Proof.
- If \(|P| \geq 4n^{3/4}\) then either
 \[\text{rank}_S(a) \leq k - 2n^{3/4} \quad \text{or} \quad \text{rank}_S(b) \geq k + 2n^{3/4} - 1 \]
- To bound
 \[\mathbb{P} \left[\text{rank}_S(a) \leq k - 2n^{3/4} \right] \quad \text{and} \quad \mathbb{P} \left[\text{rank}_S(b) \geq k + 2n^{3/4} - 1 \right] \]
 define \(X_i\) and use Chebyshev along the same lines as the previous claim.
Lazy Select: Probability of Being Correct (3/3)

Claim
\[P \left[|P| \geq 4n^{3/4} \right] \leq O(n^{-1/4}) \]

Proof.

▶ If \(|P| \geq 4n^{3/4}\) then either

\[\text{rank}_S(a) \leq k - 2n^{3/4} \quad \text{or} \quad \text{rank}_S(b) \geq k + 2n^{3/4} - 1 \]

▶ To bound

\[P \left[\text{rank}_S(a) \leq k - 2n^{3/4} \right] \quad \text{and} \quad P \left[\text{rank}_S(b) \geq k + 2n^{3/4} - 1 \right] \]

define \(X_i\) and use Chebyshev along the same lines as the previous claim.

▶ Apply union bound.
Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle
Theorem

Let X_1, \ldots, X_n be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Then, for $X = \sum_i X_i$, $\mu = \mathbb{E}[X]$, and $\delta > 0,$

$$\mathbb{P}[X > (1 + \delta)\mu] < \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^{\mu}$$
Chernoff Bound: Upper Tail (2/3)

Proof.

- For any $t > 0$: $\mathbb{P}[X > (1 + \delta)\mu] = \mathbb{P}[e^{tX} > e^{t(1+\delta)\mu}]$
Chernoff Bound: Upper Tail (2/3)

Proof.

- For any \(t > 0 \):
 \[
P[X > (1 + \delta)\mu] = P[e^{tX} > e^{t(1+\delta)\mu}]
\]

- Apply Markov inequality:
 \[
P[e^{tX} > e^{t(1+\delta)\mu}] \geq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}}
\]
Chernoff Bound: Upper Tail (2/3)

Proof.

For any $t > 0$: $\Pr [X > (1 + \delta)\mu] = \Pr [e^{tX} > e^{t(1+\delta)\mu}]$

Apply Markov inequality:

$$\Pr [e^{tX} > e^{t(1+\delta)\mu}] \geq \mathbb{E} [e^{tX}] / e^{t(1+\delta)\mu}$$

By independence:

$$\mathbb{E} [e^{tX}] = \mathbb{E} [e^{t \sum_i X_i}] = \mathbb{E} \left[\prod_i e^{tX_i} \right] = \prod_i \mathbb{E} [e^{tX_i}]$$
Chernoff Bound: Upper Tail (2/3)

Proof.

- For any $t > 0$: $\mathbb{P}[X > (1 + \delta)\mu] = \mathbb{P}[e^{tX} > e^{t(1+\delta)\mu}]

- Apply Markov inequality:
 \[\mathbb{P}[e^{tX} > e^{t(1+\delta)\mu}] \geq \mathbb{E}[e^{tX}] / e^{t(1+\delta)\mu}\]

- By independence:
 \[\mathbb{E}[e^{tX}] = \mathbb{E}[e^{t \sum_i X_i}] = \mathbb{E}\left[\prod_i e^{tX_i}\right] = \prod_i \mathbb{E}[e^{tX_i}]\]

- We will prove $\prod_i \mathbb{E}[e^{tX_i}] \leq e^{(e^t-1)\mu}$ in a sec.
Chernoff Bound: Upper Tail (2/3)

Proof.

▶ For any $t > 0$: $\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}]

▶ Apply Markov inequality:

$$\Pr[e^{tX} > e^{t(1+\delta)\mu}] \geq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$$

▶ By independence:

$$\mathbb{E}[e^{tX}] = \mathbb{E}[e^{t \sum_i X_i}] = \mathbb{E}\left[\prod_i e^{tX_i}\right] = \prod_i \mathbb{E}[e^{tX_i}]$$

▶ We will prove $\prod_i \mathbb{E}[e^{tX_i}] \leq e^{(e^t - 1)\mu}$ in a sec.

▶ For $t = \ln(1 + \delta)$:

$$\mathbb{E}[e^{tX}] / e^{t(1+\delta)\mu} \leq e^{(e^t - 1)\mu} / e^{t(1+\delta)\mu} = \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right]^\mu$$
Lemma
\[\prod_i \mathbb{E} \left[e^{tX_i} \right] \leq e^{(e^t - 1)\mu} \]

Proof.

- Using $1 + x \leq e^x$:

\[\mathbb{E} \left[e^{tX_i} \right] = p_i e^t + (1 - p_i) = 1 + p_i (e^t - 1) \leq \exp(p_i (e^t - 1)) \]
Lemma
\[\prod_i \mathbb{E} [e^{tX_i}] \leq e^{(e^t - 1)\mu} \]

Proof.

▶ Using \(1 + x \leq e^x\):

\[\mathbb{E} [e^{tX_i}] = p_ie^t + (1 - p_i) = 1 + p_i(e^t - 1) \leq \exp(p_i(e^t - 1)) \]

▶ Using \(\mu = \mathbb{E} [\sum_i X_i] = \sum_i p_i\):

\[\prod_i \exp(p_i(e^t - 1)) = \exp(\sum_i p_i(e^t - 1)) = \exp((e^t - 1)\mu) \]
Chernoff Bound: Upper Tail Simplification

Theorem
Let X_1, \ldots, X_n be independent boolean random variables such that $\Pr[X_i = 1] = p_i$. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$.

If $\delta > 2e^{-1}$,

$$\Pr[X > (1 + \delta)\mu] < 2^{-\delta \mu/4}$$

If $0 < \delta \leq 2e^{-1}$,

$$\Pr[X > (1 + \delta)\mu] < e^{-\mu \delta/2}$$
Chernoff Bound: Upper Tail Simplification

Theorem
Let X_1, \ldots, X_n be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$.

If $\delta > 2e - 1$,

$$\mathbb{P}[X > (1 + \delta)\mu] < 2^{-(1+\delta)\mu}$$
Theorem

Let X_1, \ldots, X_n be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Let $X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$.

- If $\delta > 2e - 1$,
 \[\mathbb{P}[X > (1 + \delta)\mu] < 2^{-(1+\delta)\mu} \]

- If $0 < \delta \leq 2e - 1$,
 \[\mathbb{P}[X > (1 + \delta)\mu] < e^{-\mu\delta^2/4} \]
Theorem
Let X_1, \ldots, X_n be independent boolean random variables such that $\Pr[X_i = 1] = p_i$. Then, for $X = \sum_i X_i$, $\mu = \mathbb{E}[X]$, and $1 > \delta > 0$,

$$\Pr[X < (1 - \delta)\mu] < \exp(-\mu\delta^2/2)$$
Chernoff Bound: Lower Tail (2/2)

Proof.

- For any \(t > 0 \):

\[
P[X < (1 - \delta)\mu] = P[e^{-tX} > e^{-t(1-\delta)\mu}]\]
Chernoff Bound: Lower Tail (2/2)

Proof.

- For any $t > 0$: \(\mathbb{P} [X < (1 - \delta)\mu] = \mathbb{P} [e^{-tX} > e^{-t(1-\delta)\mu}] \)

- Apply Markov inequality:

\[
\mathbb{P} \left[e^{-tX} > e^{-t(1-\delta)\mu} \right] \geq \mathbb{E} \left[e^{-tX} \right] / e^{-t(1-\delta)\mu}
\]
Proof.

- For any $t > 0$: $\Pr[X < (1 - \delta)\mu] = \Pr[e^{-tX} > e^{-t(1-\delta)\mu}]
- Apply Markov inequality:

\[
\Pr\left[e^{-tX} > e^{-t(1-\delta)\mu}\right] \geq \frac{\mathbb{E}[e^{-tX}]}{e^{-t(1-\delta)\mu}}
\]

- Similarly to before: $\mathbb{E}[e^{-tX}] = \prod_i \mathbb{E}[e^{-tX_i}] \leq e^{(e^{-t}-1)\mu}$
Chernoff Bound: Lower Tail (2/2)

Proof.

- For any $t > 0$: $\mathbb{P}[X < (1 - \delta)\mu] = \mathbb{P}[e^{-tX} > e^{-t(1-\delta)\mu}]$
- Apply Markov inequality:
 \[
 \mathbb{P}[e^{-tX} > e^{-t(1-\delta)\mu}] \geq \mathbb{E}[e^{-tX}] / e^{-t(1-\delta)\mu}
 \]
- Similarly to before: $\mathbb{E}[e^{-tX}] = \prod_i \mathbb{E}[e^{-tX_i}] \leq e^{(e^{-t} - 1)\mu}$
- For $t = -\ln(1 - \delta)$:
 \[
 \mathbb{E}[e^{-tX}] / e^{-t(1-\delta)\mu} \leq e^{(e^{-t} - 1)\mu} / e^{-t(1-\delta)\mu} = \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}}\right)^\mu
 \]

\square
Chernoff Bound: Lower Tail (2/2)

Proof.

- For any $t > 0$: $\Pr[X < (1 - \delta)\mu] = \Pr[e^{-tX} > e^{-t(1-\delta)\mu}]$
- Apply Markov inequality:

 $$\Pr[e^{-tX} > e^{-t(1-\delta)\mu}] \geq \frac{\mathbb{E}[e^{-tX}]}{e^{-t(1-\delta)\mu}}$$

- Similarly to before: $\mathbb{E}[e^{-tX}] = \prod_i \mathbb{E}[e^{-tX_i}] \leq e^{(e^{-t} - 1)\mu}$
- For $t = -\ln(1 - \delta)$:

 $$\frac{\mathbb{E}[e^{-tX}]}{e^{-t(1-\delta)\mu}} \leq \frac{e^{(e^{-t} - 1)\mu}}{e^{-t(1-\delta)\mu}} = \left[\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}}\right]^\mu$$

- Simplify using $(1 - \delta)^{1-\delta} > \exp(-\delta + \delta^2/2)$ since $\delta \in (0, 1)$.

\qed
Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle
Set Balancing

Let \(A_1, \ldots, A_n \) be subsets of \([n]\) such that \(|A_i| = n/2 \). We want to partition \([n]\) into \(B \) and \(C \) such that

\[
\max_i |A_i \cap B| - |A_i \cap C|
\]

is minimized.

Hint: Use \(\mathbb{P}[|X - \mathbb{E}[X]| < \delta \mu] \leq 2 \exp(-\mathbb{E}[X] \delta^2/4) \).
Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle
For next time, please make sure you’ve read:

- Chapter 3: Moments and Deviations (20 pages)
Outline

Lazy Select

Chernoff Bounds

Set Balancing

Readings

Puzzle
There are 3 coins in a bag: the first coin has two heads, the second coin has two tails, and the third coin has one head and one tail.

You draw a coin at random without looking and toss it in the air. It lands heads up.

What’s the probability that the other side of the coin is heads?