Outline

Probability and Random Variables

Markov and Chebyshev

Balls and Bins (and Birthdays and Coupons!)

Puzzle
Probability

- Inclusion-Exclusion: For arbitrary events A_1, A_2, \ldots, A_n,

$$P[\bigcup_{i=1}^n A_i] = \sum_{i=1}^n P[A_i] - \sum_{i<j}^n P[A_i \cap A_j] + \sum_{i<j<k}^n P[A_i \cap A_j \cap A_k] - \ldots$$

Truncating yields upper (or lower) bound if the last term is positive (or negative). Union bound, $P[\bigcup_{i=1}^n A_i] \leq \sum_{i=1}^n P[A_i]$
Probability

- **Inclusion-Exclusion**: For arbitrary events A_1, A_2, \ldots, A_n,

$$P\left[\bigcup_{i=1}^n A_i \right] = \sum_{i=1}^n P\left[A_i \right] - \sum_{i<j}^n P\left[A_i \cap A_j \right] + \sum_{i<j<k}^n P\left[A_i \cap A_j \cap A_k \right] - \ldots$$

Truncating yields upper (or lower) bound if the last term is positive (or negative). Union bound, $P\left[\bigcup_{i=1}^n A_i \right] \leq \sum_{i=1}^n P\left[A_i \right]$

- **Conditional Probability**: For arbitrary events A and B,

$$P\left[A | B \right] = \frac{P\left[A \cap B \right]}{P\left[B \right]}$$

and $\Pr(\bigcap_{i=1}^n A_i) = \Pr(A_1) \Pr(A_2 | A_1) \ldots \Pr(A_n | \bigcap_{i=1}^{n-1} A_i)$
Probability

- **Inclusion-Exclusion:** For arbitrary events A_1, A_2, \ldots, A_n,

\[
P\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} P\left[A_i \right] - \sum_{i<j}^{n} P\left[A_i \cap A_j \right] + \sum_{i<j<k}^{n} P\left[A_i \cap A_j \cap A_k \right] - \ldots
\]

Truncating yields upper (or lower) bound if the last term is positive (or negative). Union bound, $P\left[\bigcup_{i=1}^{n} A_i\right] \leq \sum_{i=1}^{n} P\left[A_i \right]$

- **Conditional Probability:** For arbitrary events A and B,

\[
P\left[A \mid B \right] = \frac{P\left[A \cap B \right]}{P\left[B \right]}
\]

and $Pr(\cap_{i=1}^{n} A_i) = Pr(A_1) \cdot Pr(A_2 \mid A_1) \ldots Pr(A_n \mid \cap_{i=1}^{n-1} A_i)$

- **Independence:** A and B are independent is $P\left[A \mid B \right] = P\left[A \right]$ (or equivalently $P\left[A \cap B \right] = P\left[A \right] P\left[B \right]$.)
Random Variables

- **Expectation:** $E[X] = \sum_r rP[X = r]$
- **Variance:** $V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$
- **Standard deviation:** $\sigma_X = \sqrt{V[X]}$
Random Variables

- **Expectation:** \(\mathbb{E}[X] = \sum_r r \mathbb{P}[X = r] \)
- **Variance:** \(\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \)
- **Standard deviation:** \(\sigma_X = \sqrt{\mathbb{V}[X]} \)

Theorem

- \(\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \)
- \(\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y] \) if \(X \) and \(Y \) independent.
- \(\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y] \) if \(X \) and \(Y \) independent.
Moment Generating Functions

Let X be a non-negative integer-valued random variable. The *probability generating function* of X is

$$G_X(z) = \sum_{i=0}^{\infty} z^i \mathbb{P}[X = i]$$
Let X be a non-negative integer-valued random variable. The\n*probability generating function* of X is
\[G_X(z) = \sum_{i=0}^{\infty} z^i P[X = i].\]

Lemma

- $\mathbb{E}[X] = G'(1)$.
- $\mathbb{V}[X] = G'' + G'(1) - G'(1)^2$.
Examples of Random Variables

Example
Let X have the binomial distribution $Bin(n, p)$:

$$P[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$$

“How many heads do we see when we toss a coin with probability p of heads n times?” This distribution has generating function $G(z) = (1 - p + pz)^n$. $\mathbb{E}[X] = np$ and $\mathbb{V}[X] = np(1 - p)$.
Examples of Random Variables

Example
Let X have the binomial distribution $Bin(n, p)$:

$$
\mathbb{P}[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}
$$

“How many heads do we see when we toss a coin with probability p of heads n times?” This distribution has generating function $G(z) = (1 - p + pz)^n$. $\mathbb{E}[X] = np$ and $\mathbb{V}[X] = np(1 - p)$.

Example
Let X have the binomial distribution $Geom(p)$:

$$
\mathbb{P}[X = i] = (1 - p)^{i-1} p
$$

“How many times do we toss a coin with probability p of heads until we see a heads.” This distribution has generating function $G(z) = pz/(1 - z + pz)$. $\mathbb{E}[X] = 1/p$, $\mathbb{V}[X] = (1 - p)/p^2$.
Outline

Probability and Random Variables

Markov and Chebyshev

Balls and Bins (and Birthdays and Coupons!)

Puzzle
Markov Inequality

Theorem (Markov)

Let Y be a random variable assuming only non-negative values. Then, for all $t > 0$, $\mathbb{P} [Y \geq t\mathbb{E} [Y]] \leq 1/t$.
Markov Inequality

Theorem (Markov)

Let Y be a random variable assuming only non-negative values. Then, for all $t > 0$, $\mathbb{P}[Y \geq t\mathbb{E}[Y]] \leq 1/t$.

Proof.

- Define $f(y) = 1$ if $y \geq t\mathbb{E}[Y]$ and 0 otherwise.
Markov Inequality

Theorem (Markov)

Let Y be a random variable assuming only non-negative values. Then, for all $t > 0$, $\Pr[Y \geq t\mathbb{E}[Y]] \leq 1/t$.

Proof.

- Define $f(y) = 1$ if $y \geq t\mathbb{E}[Y]$ and 0 otherwise.
- Note that $f(y) \leq y/(t\mathbb{E}[Y])$.
Markov Inequality

Theorem (Markov)

Let Y be a random variable assuming only non-negative values. Then, for all $t > 0$, $\mathbb{P}[Y \geq t \mathbb{E}[Y]] \leq 1/t$.

Proof.

- Define $f(y) = 1$ if $y \geq t \mathbb{E}[Y]$ and 0 otherwise.
- Note that $f(y) \leq y/(t \mathbb{E}[Y])$.
- $\mathbb{P}[Y \geq t \mathbb{E}[Y]] = \mathbb{E}[f(Y)]$
Markov Inequality

Theorem (Markov)

Let Y be a random variable assuming only non-negative values. Then, for all $t > 0$, $\mathbb{P}[Y \geq t \mathbb{E}[Y]] \leq 1/t$.

Proof.

- Define $f(y) = 1$ if $y \geq t \mathbb{E}[Y]$ and 0 otherwise.
- Note that $f(y) \leq y/(t \mathbb{E}[Y])$.
- $\mathbb{P}[Y \geq t \mathbb{E}[Y]] = \mathbb{E}[f(Y)]$
- Then, $\mathbb{E}[f(Y)] \leq \mathbb{E}[Y/(t \mathbb{E}[Y])] = 1/t$
Is the inequality ever tight, i.e., \(\mathbb{P} [Y \geq t \mathbb{E} [Y]] = 1/t \)?
Markov Inequality: Questions and Extensions

- Is the inequality ever tight, i.e., $\mathbb{P}[Y \geq t \mathbb{E}[Y]] = 1/t$?
 - E.g., Y is t with probability $1/t$ and 0 otherwise.
Is the inequality ever tight, i.e., \(\mathbb{P}[Y \geq t\mathbb{E}[Y]] = 1/t \)?

- E.g., \(Y \) is \(t \) with probability \(1/t \) and 0 otherwise.

Can we bound \(\mathbb{P}[Y \geq t\mathbb{E}[Y]] \) below for \(t > 1 \)?
Markov Inequality: Questions and Extensions

- Is the inequality ever tight, i.e., $\mathbb{P}[Y \geq t\mathbb{E}[Y]] = 1/t$?
 - E.g., Y is t with probability $1/t$ and 0 otherwise.
- Can we bound $\mathbb{P}[Y \geq t\mathbb{E}[Y]]$ below for $t > 1$?
 - E.g., consider a constant random variable $Y = 1$.

If $Y \leq m$, consider the random variable $X = m - Y$.

Markov Inequality: Questions and Extensions

- Is the inequality ever tight, i.e., \(P[Y \geq t \mathbb{E}[Y]] = 1/t \)?
 - E.g., \(Y \) is \(t \) with probability \(1/t \) and 0 otherwise.
- Can we bound \(P[Y \geq t \mathbb{E}[Y]] \) below for \(t > 1 \)?
 - E.g., consider a constant random variable \(Y = 1 \)
- Can we bound \(P[Y \leq t \mathbb{E}[Y]] \) for \(0 < t < 1 \)?

If \(Y \leq m \), consider the random variable \(X = m - Y \).
Markov Inequality: Questions and Extensions

- Is the inequality ever tight, i.e., $P[Y \geq tE[Y]] = 1/t$?
 - E.g., Y is t with probability $1/t$ and 0 otherwise.

- Can we bound $P[Y \geq tE[Y]]$ below for $t > 1$?
 - E.g., consider a constant random variable $Y = 1$

- Can we bound $P[Y \leq tE[Y]]$ for $0 < t < 1$?
 - If $Y \leq m$, consider the random variable $X = m - Y$.

Theorem (Chebyshev)

Let X be a random variable with expectation μ_X and standard deviation σ_X. Then for $t > 0$, $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] \leq 1/t^2$.
Chebyshev Inequality

Theorem (Chebyshev)

Let X be a random variable with expectation μ_X and standard deviation σ_X. Then for $t > 0$, $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] \leq 1/t^2$.

Proof.

- Note that $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] = \mathbb{P}[(X - \mu_X)^2 \geq t^2\sigma_X^2]$
Chebyshev Inequality

Theorem (Chebyshev)

Let X be a random variable with expectation μ_X and standard deviation σ_X. Then for $t > 0$, $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] \leq 1/t^2$.

Proof.

- Note that $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] = \mathbb{P}[(X - \mu_X)^2 \geq t^2\sigma_X^2]$
- Let $Y = (X - \mu_X)^2$ and note $\mathbb{E}[Y] = \sigma_X^2$
Theorem (Chebyshev)

Let X be a random variable with expectation μ_X and standard deviation σ_X. Then for $t > 0$, $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] \leq 1/t^2$.

Proof.

- Note that $\mathbb{P}[|X - \mu_X| \geq t\sigma_X] = \mathbb{P}[(X - \mu_X)^2 \geq t^2\sigma_X^2]$
- Let $Y = (X - \mu_X)^2$ and note $\mathbb{E}[Y] = \sigma_X^2$
- Use Markov’s inequality to show $\mathbb{P}[Y \geq t^2\mathbb{E}[Y]] \leq 1/t^2$
Chebyshev Inequality: Questions and Extensions

Theorem

Let X_1, \ldots, X_n be i.i.d. \textit{(independent, identically distributed, random variables)} with $\mathbb{E}[X_i] = \mu$ and $\sigma_{X_i} = \sigma$. Let $Y = n^{-1} \sum_{1 \leq i \leq n} X_i$. Then,

$$\Pr[|Y - \mu_Y| \geq t] \leq \frac{\sigma_Y^2}{t^2} = \frac{\sigma^2}{(t^2 n)}$$
Chebyshev Inequality: Questions and Extensions

Theorem

Let X_1, \ldots, X_n be i.i.d. (independent, identically distributed, random variables) with $\mathbb{E} [X_i] = \mu$ and $\sigma_{X_i} = \sigma$. Let

$Y = n^{-1} \sum_{1 \leq i \leq n} X_i$. Then,

$$\mathbb{P} [|Y - \mu_Y| \geq t] \leq \sigma_Y^2 / t^2 = \sigma^2 / (t^2 n)$$

Proof.

- Linearity of expectation implies $\mu_Y = \mu$.
- Linearity of variance implies $\sigma_Y^2 = \sigma^2 / n$.

\[\square \]
Chebyshev Inequality: Questions and Extensions

Theorem
Let X_1, \ldots, X_n be i.i.d. (independent, identically distributed, random variables) with $\mathbb{E}[X_i] = \mu$ and $\sigma_{X_i} = \sigma$. Let $Y = n^{-1} \sum_{1 \leq i \leq n} X_i$. Then,

$$\mathbb{P}[|Y - \mu_Y| \geq t] \leq \frac{\sigma_Y^2}{t^2} = \frac{\sigma^2}{(t^2 n)}$$

Proof.

- Linearity of expectation implies $\mu_Y = \mu$.
- Linearity of variance implies $\sigma_Y^2 = \sigma^2 / n$.

Example
Let $X \sim Bin(n, p)$. Using Chebyshev we deduce,

$$\mathbb{P}[|X - \mu_X| \geq t] \leq \frac{(np(1 - p))}{t^2}.$$
Outline

Probability and Random Variables

Markov and Chebyshev

Balls and Bins (and Birthdays and Coupons!)

Puzzle
Balls and Bins

Throw m balls into n bins where each throw is independent. Many questions:

▶ The maximum number of balls that fall into the same bin?
▶ How large must m be such that there exists a bin with at least two balls? (Birthday Paradox)
▶ How large must m be such that all bins get at least one ball? (Coupon Collecting)
Balls and Bins

Throw m balls into n bins where each throw is independent. Many questions:

- The maximum number of balls that fall into the same bin?
Balls and Bins

Throw m balls into n bins where each throw is independent. Many questions:

- The maximum number of balls that fall into the same bin?
- How large must m be such that there exists a bin with at least two balls? (Birthday Paradox)
Throw m balls into n bins where each throw is independent. Many questions:

- The maximum number of balls that fall into the same bin?
- How large must m be such that there exists a bin with at least two balls? *(Birthday Paradox)*
- How large must m be such that all bins get at least one ball? *(Coupon Collecting)*
Heaviest Bin (1/2)

Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.
Heaviest Bin (1/2)

Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.

Lemma

Let $k \geq (3 \ln n) / \ln \ln n$. Then $\mathbb{P} [Y_i \geq k] \leq n^{-2}$
Heaviest Bin (1/2)

Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.

Lemma

Let $k \geq (3 \ln n) / \ln \ln n$. Then $\mathbb{P}[Y_i \geq k] \leq n^{-2}$

Proof.

$\mathbb{P}[Y_i = j] = \binom{n}{j}(1/n)^j(1 - 1/n)^{n-j}$
Heaviest Bin (1/2)

Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.

Lemma

Let $k \geq \frac{(3 \ln n)}{\ln \ln n}$. Then $\mathbb{P}[Y_i \geq k] \leq n^{-2}$

Proof.

$\mathbb{P}[Y_i = j] = \binom{n}{j} \left(\frac{1}{n}\right)^j (1 - 1/n)^{n-j}$

Using the bound $\binom{n}{j} \leq (ne/j)^j$:

$\mathbb{P}[Y_i = j] = \binom{n}{j} \left(\frac{1}{n}\right)^j (1 - 1/n)^{n-j} \leq (e/j)^j$
Heaviest Bin (1/2)

Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.

Lemma

Let $k \geq (3 \ln n)/\ln \ln n$. Then $\mathbb{P}[Y_i \geq k] \leq n^{-2}$

Proof.

1. $\mathbb{P}[Y_i = j] = \binom{n}{j} (1/n)^j (1 - 1/n)^{n-j}$
2. Using the bound $\binom{n}{j} \leq (ne/j)^j$:

 $$\mathbb{P}[Y_i = j] = \binom{n}{j} (1/n)^j (1 - 1/n)^{n-j} \leq (e/j)^j$$

3. By summing up a geometric series:

 $$\mathbb{P}[Y_i \geq k] = \sum_{j \geq k} (e/j)^j \leq (e/k)^k \frac{1}{1 - e/k}$$
Assume \(m = n \). Let \(Y_i \) be number of balls that fall in \(i \)-th bin.

Lemma

Let \(k \geq \frac{3 \ln n}{\ln \ln n} \). Then \(\mathbb{P}[Y_i \geq k] \leq n^{-2} \)
Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.

Lemma

Let $k \geq (3 \ln n)/\ln \ln n$. Then $\mathbb{P}[Y_i \geq k] \leq n^{-2}$

Theorem

$\mathbb{P}[Y_i < k \text{ for all } i] \geq 1 - 1/n.$
Assume $m = n$. Let Y_i be number of balls that fall in i-th bin.

Lemma

Let $k \geq (3 \ln n)/\ln \ln n$. Then $\mathbb{P} [Y_i \geq k] \leq n^{-2}$

Theorem

$\mathbb{P} [Y_i < k \text{ for all } i] \geq 1 - 1/n$.

Proof.

Use union bound:

$$\mathbb{P} [Y_i \geq k \text{ for some } i] \leq \sum_i \mathbb{P} [Y_i \geq k] \leq 1/n$$
Birthday Paradox

Lemma
\[P \left[\text{first } m \text{ balls fall in distinct bins} \right] \leq e^{-m(m-1)/(2n)} . \]

Proof.
\[P \left[\bigcap_{1 \leq i \leq m} A_i \right] = P[A_1] \prod_{1 \leq i \leq m} P[A_i | \bigcap_{1 \leq i \leq m-1} A_i] = 1 - \left(\frac{i-1}{n} \right) \]

With \(n = 365 \) and \(m = 29 \), probability < \(e^{-1} \). Tighter analysis is possible.
Birthday Paradox

Lemma

\[\mathbb{P} \left[\text{first } m \text{ balls fall in distinct bins} \right] \leq e^{-m(m-1)/(2n)}. \]

Proof.

- Let \(A_i \) be event that the \(i \)-th ball lands in a bin not containing any of the first \(i - 1 \) balls.
Birthday Paradox

Lemma
\[\Pr[\text{first } m \text{ balls fall in distinct bins}] \leq e^{-m(m-1)/(2n)}. \]

Proof.

- Let \(A_i \) be event that the \(i \)-th ball lands in a bin not containing any of the first \(i - 1 \) balls.

- \[\Pr[\bigcap_{1 \leq i \leq m} A_i] = \Pr[A_1] \Pr[A_2|A_1] \ldots \Pr[A_m|\bigcap_{1 \leq i \leq m-1} A_i] \]

With \(n = 365 \) and \(m = 29 \), probability < \(e^{-1} \). Tighter analysis is possible.
Birthday Paradox

Lemma
\[\mathbb{P} \text{[first } m \text{ balls fall in distinct bins]} \leq e^{-m(m-1)/(2n)}. \]

Proof.

\begin{itemize}
 \item Let \(A_i \) be event that the \(i \)-th ball lands in a bin not containing any of the first \(i - 1 \) balls.
 \item \(\mathbb{P}[\cap_{1 \leq i \leq m} A_i] = \mathbb{P}[A_1] \mathbb{P}[A_2 | A_1] \ldots \mathbb{P}[A_m | \cap_{1 \leq i \leq m-1} A_i] \)
 \item \(\mathbb{P}[A_i | \cap_{1 \leq i \leq i-1} A_i] = 1 - (i - 1)/n \)
\end{itemize}
Birthday Paradox

Lemma
\[\mathbb{P} \left[\text{first } m \text{ balls fall in distinct bins} \right] \leq e^{-m(m-1)/(2n)}. \]

Proof.

- Let \(A_i \) be event that the \(i \)-th ball lands in a bin not containing any of the first \(i - 1 \) balls.
- \[\mathbb{P} \left[\bigcap_{1 \leq i \leq m} A_i \right] = \mathbb{P} [A_1] \mathbb{P} [A_2 | A_1] \ldots \mathbb{P} [A_m | \bigcap_{1 \leq i \leq m-1} A_i] \]
- \[\mathbb{P} [A_i | \bigcap_{1 \leq i \leq i-1} A_i] = 1 - (i - 1)/n \]
- Putting it together and using \(\sum_{1 \leq i \leq a} i = (a + 1)a/2 \):

\[
\mathbb{P} \left[\bigcap_{1 \leq i \leq m} A_i \right] = \prod_{1 \leq i \leq m} \left(1 - \frac{i - 1}{n} \right) \leq e^{-m(m-1)/(2n)}
\]
Birthday Paradox

Lemma
\[P \left[\text{first } m \text{ balls fall in distinct bins} \right] \leq e^{-m(m-1)/(2n)}. \]

Proof.

- Let \(A_i \) be event that the \(i \)-th ball lands in a bin not containing any of the first \(i - 1 \) balls.
- \[P \left[\bigcap_{1 \leq i \leq m} A_i \right] = P \left[A_1 \right] P \left[A_2 | A_1 \right] \ldots P \left[A_m | \bigcap_{1 \leq i \leq m-1} A_i \right] \]
- \[P \left[A_i | \bigcap_{1 \leq i \leq i-1} A_i \right] = 1 - (i - 1)/n \]
- Putting it together and using \(\sum_{1 \leq i \leq a} i = (a + 1)a/2 \):

\[
P \left[\bigcap_{1 \leq i \leq m} A_i \right] = \prod_{1 \leq i \leq m} \left(1 - \frac{i-1}{n} \right) \leq e^{-m(m-1)/(2n)}
\]

With \(n = 365 \) and \(m = 29 \), probability < \(e^{-1} \). Tighter analysis is possible.
Coupon Collecting (1/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$.
Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{E}[Z_n] = nH_n$ where $H_n = 1 + 1/2 + \ldots + 1/n = \ln n + \Theta(n)$.
Coupon Collecting (1/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{E}[Z_n] = nH_n$ where $H_n = 1 + 1/2 + \ldots + 1/n = \ln n + \Theta(n)$.

Proof.

- X_i has a geometric distribution:

 $\mathbb{P}[X_i = j] = p_i \cdot (1 - p_i)^{j-1}$

 where $p_i = 1 - i/n$.

 □
Coupon Collecting (1/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

\[\mathbb{E}[Z_n] = nH_n \text{ where } H_n = 1 + 1/2 + \ldots + 1/n = \ln n + \Theta(n). \]

Proof.

- X_i has a geometric distribution:
 \[\mathbb{P}[X_i = j] = p_i (1 - p_i)^{j-1} \]
 where $p_i = 1 - i/n$.
- $\mathbb{E}[X_i] = 1/p_i$.

\[\square \]
Coupon Collecting (1/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{E}[Z_n] = nH_n$ where $H_n = 1 + 1/2 + \ldots + 1/n = \ln n + \Theta(n)$.

Proof.

- X_i has a geometric distribution:

 $$\mathbb{P}[X_i = j] = p_i (1 - p_i)^{j-1}$$

 where $p_i = 1 - i/n$.

- $\mathbb{E}[X_i] = 1/p_i$.

- $\mathbb{E}[Z_n] = \sum_{0 \leq i \leq n-1} \mathbb{E}[X_i] = n/n + n/(n-1) + \ldots + n/1$
Coupon Collecting (2/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{V}[Z_n] = n^2(\pi^2/6 + o(1)) - nH_n.$
Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{V}[Z_n] = n^2(\pi^2/6 + o(1)) - nH_n$.

Proof.

- X_i has a geometric distribution: $\mathbb{V}[X_i] = (1 - p_i)/p_i^2$.
Coupon Collecting (2/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{V}[Z_n] = n^2(\pi^2/6 + o(1)) - nH_n$.

Proof.

- X_i has a geometric distribution: $\mathbb{V}[X_i] = (1 - p_i)/p_i^2$.
- The X_i are independent: $\mathbb{V}[Z_n] = \sum_{0 \leq i \leq n-1} \mathbb{V}[X_i]$
Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{V}[Z_n] = n^2(\pi^2/6 + o(1)) - nH_n$.

Proof.

- X_i has a geometric distribution: $\mathbb{V}[X_i] = (1 - p_i)/p_i^2$.
- The X_i are independent: $\mathbb{V}[Z_n] = \sum_{0 \leq i \leq n-1} \mathbb{V}[X_i]$
- Therefore, $\mathbb{V}[Z_n]$ equals

$$\sum_{0 \leq i \leq n-1} \frac{1 - p_i}{p_i^2} = \sum_{0 \leq i \leq n-1} \frac{ni}{(n - i)^2} = n^2 \sum_{1 \leq i \leq n} \frac{1}{i^2} - nH_n$$
Coupon Collecting (2/2)

Let Z_i be the throw in which exactly i bins become non-empty. Let $X_i = Z_{i+1} - Z_i$. Note that $Z_n = \sum_{0 \leq i \leq n-1} X_i$

Lemma

$\mathbb{V}[Z_n] = n^2(\pi^2/6 + o(1)) - nH_n$.

Proof.

- X_i has a geometric distribution: $\mathbb{V}[X_i] = (1 - p_i)/p_i^2$.
- The X_i are independent: $\mathbb{V}[Z_n] = \sum_{0 \leq i \leq n-1} \mathbb{V}[X_i]$
- Therefore, $\mathbb{V}[Z_n]$ equals

$$\sum_{0 \leq i \leq n-1} \frac{1 - p_i}{p_i^2} = \sum_{0 \leq i \leq n-1} \frac{ni}{(n - i)^2} = n^2 \sum_{1 \leq i \leq n} \frac{1}{i^2} - nH_n$$

- Appeal to the fact $\lim_{n \to \infty} \left(\sum_{1 \leq i \leq n} \frac{1}{i^2} \right) = \pi^2/6$.

\[\square\]
Outline

Probability and Random Variables

Markov and Chebyshev

Balls and Bins (and Birthdays and Coupons!)

Puzzle
Clock Solitaire

- Take a standard pack of 52 cards which is randomly shuffled.
- Split into 13 piles of 4 and label piles \{A,2,\ldots,10,J,Q,K\}.
- Take first card from “K” pile.
- Take next card from “X” pile where X is the face value of the previous card taken.
- Repeat until either all cards are removed (you win) or we get stuck (you lose).

What’s the probability you win?