Basic Data Stream Model

Definition
Input is a length m list $\langle a_1, \ldots, a_m \rangle$ where $a_i \in [n]$. You can only access the elements sequentially and have memory that is sub-linear in m and n.

Problem
Let $f_i = |\{j : a_j = i\}|$.

1. Compute approximations to all f_i.
2. Estimate $F_k = \sum_{i\in[n]} f_i^k$.
3. Estimate $F_0 = \sum_{i\in[n]} f_i^0$, i.e., the number of distinct items.
Outline

Estimating Point Queries

Estimating F_k

Estimating F_2

Estimating F_0

F_0 lower bound

ℓ_p and Stable Distributions
Estimating Point Queries

Problem
Estimate all f_i upto $\pm \epsilon m$ error.

Algorithm

1. Pick d 2-wise hash functions $h_1, \ldots, h_d : [n] \rightarrow [w]$.
2. Compute $T_{i,j} = \sum_{\ell : h_i(\ell) = j} f_\ell$
3. Let $\hat{f}_\ell = \min_{i : h_i(\ell) = j} T_{i,j}$

Theorem
There exists a $O(\epsilon^{-1} \log(n/\delta))$ space algorithm that returns $(\hat{f}_1, \ldots, \hat{f}_n)$ where $f_i \leq \hat{f}_i \leq f_i + \epsilon m$ with probability $1 - \delta$.

Proof.

1. Set $w = 2/\epsilon$: $\mathbb{E}[T_{i,j} | h_i(\ell) = j] \leq f_\ell + \epsilon m/2$.
2. Set $d = \log(n/\delta)$: $\mathbb{P}[\min_{i : h_i(\ell) = j} T_{i,j} > f_\ell + \epsilon m] \leq \delta/n$.

\qed
Outline

Estimating Point Queries

Estimating F_k

Estimating F_2

Estimating F_0

F_0 lower bound

ℓ_p and Stable Distributions
Estimating F_k

Problem

Estimate $F_k = \sum f_i^k$.

Algorithm

1. Pick j uniformly from $[m]$
2. Compute $r = |\{j \leq j' \leq m : a_{j'} = a_j\}$
3. Output $X = mr^k - m(r - 1)^k$

Theorem

There exists a $O(kn^{1-1/k}e^{-2} \log(1/\delta))$ space algorithm that returns a $(1 + \epsilon)$ factor approximation to F_k with probability $1 - \delta$.

Proof.

$\mathbb{E}[X] = F_k$ and $\mathbb{V}[X] \leq kn^{1-1/k}F_k^2$. Run copies of algorithm. Average results appropriately and apply Chernoff/Chebyshev.
Outline

Estimating Point Queries

Estimating F_k

Estimating F_2

Estimating F_0

F_0 lower bound

p and Stable Distributions
Estimating F_2

Problem

Estimate $F_2 = \sum_i f_i^2$.

Algorithm

1. Pick $(x_1, \ldots, x_n) \in \{-1, 1\}^n$ with x_i and x_j independent
2. Compute $\sum_{i\in[n]} x_i f_i$
3. Return $X = (\sum_{i\in[n]} x_i f_i)^2$

Theorem

There exists a $O(\epsilon^{-2} \log(1/\delta)(\log m + \log n))$ space algorithm that returns a $(1 + \epsilon)$ factor approximation to F_2 with probability $1 - \delta$.

Proof.

$\mathbb{E} [X] = F_2$ and $\mathbb{V} [X] \leq 2F_2^2$. Run $O(\epsilon^{-2} \log(1/\delta))$ copies. Average results appropriately and apply Chernoff/Chebyshev.
Relationship to Johnson Lindenstrauss

Algorithm

1. Let $Y = \frac{1}{\|X\|_2} (x_1, \ldots, x_n)$ be such that each x_i are independent $N(0, 1)$ variables where $\|X\|_2 = (x_1^2 + \ldots + x_n^2)^{1/2}$
2. Compute $h(x) = \sum_{i \in [n]} x_i f_i$
3. Repeat d times to get $(h(x)_1, \ldots, h(x)_d)$

Theorem

For any p vectors in Euclidean space $v_1, \ldots, v_p \in \mathbb{R}^n$, there exists a map $h : \mathbb{R}^n \rightarrow \mathbb{R}^d$ such that

$$(1 - \epsilon)\|h(v_i) - h(v_j)\|_2 \leq \|v_i - v_j\|_2 \leq (1 + \epsilon)\|h(v_i) - h(v_j)\|_2$$

where $d = O(\epsilon^{-2} \log n)$.

Outline

Estimating Point Queries

Estimating F_k

Estimating F_2

Estimating F_0

F_0 lower bound

l_p and Stable Distributions
Problem and First Attempt

Problem
Estimate $F_0 = \sum_i f_i^0$, i.e., number of distinct values in the stream.

Algorithm

1. Pick a random hash function $h : \{1, \ldots, n\} \rightarrow [0, 1]$
2. As the stream arrives, compute $h(a_i)$.
3. Keep track of minimum value v seen so far.
4. Output $1/v - 1$ as estimate for F_0

Issues:

1. If hash function is totally random it may be too big to store: Assume h is pairwise independent.
2. Precision issues: Hash into $[n^3]$ rather than $[0, 1]$
3. The above estimator varies too much: Track t-th smallest
The Algorithm

Algorithm

1. Pick a random 2-wise hash function \(h : [n] \rightarrow [n^3] \)
2. Compute \(t \)-th smallest hash values \(v_1, \ldots, v_t \).
3. If \(F_0 \leq t \), output \(\hat{F}_0 = F_0 \).
4. If \(F_0 > t \), output \(\hat{F}_0 = tn^3/v_t \)

Theorem

If \(t = 20/\epsilon^2 \) then \(\mathbb{P} \left[|\hat{F}_0 - F_0| \geq \epsilon F_0 \right] \leq 2/5. \)

Corollary

We can \((1 + \epsilon)\) approximate \(F_0 \) with probability \(1 - \delta \) in only \(O(\epsilon^{-2} \log(1/\delta) \log n) \) space.
Proof of Theorem

1. Assuming $F_0 > t$, we get good estimate if

$$(1 - \epsilon)F_0 \leq t{n^3}/v_t \leq (1 + \epsilon)F_0$$

or equivalently $\frac{tn^3}{(1+\epsilon)F_0} \leq v_t \leq \frac{tn^3}{(1-\epsilon)F_0}$

2. Consider $\mathbb{P}\left[\frac{tn^3}{(1+\epsilon)F_0} \leq v_t\right] = \mathbb{P}[Y < t]$ where Y is the number of items hashing to under $\frac{tn^3}{(1+\epsilon)F_0}$. Other case is similar.

3. For each a_i,

$$\mathbb{P}\left[h(a_i) \leq \frac{tn^3}{(1 + \epsilon)F_0}\right] \leq \frac{t}{(1 + \epsilon)F_0}$$

4. By linearity of expectation, $\mathbb{E}[Y] = t/(1 + \epsilon)$

5. Since h is 2-wise independent $\mathbb{V}[Y] \leq t/(1 + \epsilon)$

6. By Chebyshev: $\mathbb{P}[Y \geq t] \leq 1/5$ if $t \geq 20\epsilon^{-2}$
Outline

Estimating Point Queries

Estimating F_k

Estimating F_2

Estimating F_0

F_0 lower bound

l_p and Stable Distributions
Theorem
Any data stream algorithm that approximates F_0 up to a $(1 + \epsilon)$ factor with probability $9/10$ needs $\Omega(\epsilon^{-2})$ space.

Lemma
Alice has $x \in \{0, 1\}^n$ and Bob has $y \in \{0, 1\}^n$. Alice needs to send Bob $\Omega(n)$ bits if he is to estimate the hamming distance $\Delta(x, y)$ up to $\pm o(\sqrt{n})$ with probability $9/10$.

- Define a multi-set by $S = \{i : x_i = 1\} \cup \{i : y_i = 1\}$

$$F_0(S) = |x|/2 + |y|_1/2 + \Delta(x, y)/2$$

- $o(\sqrt{n})$ estimate for $F_0(S)$ gives $o(\sqrt{n})$ estimate for $\Delta(x, y)$
- If $n = o(\epsilon^{-2})$: $(1 + \epsilon)$ factor approx of $F_0(S)$ is $o(\sqrt{n})$ approx.
One-Pass Lower Bound (1/2)

- Reduction from **INDEX** problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- Alice computes $\text{sign}(r.z)$ and Bob computes $\text{sign}(r_j)$
- **Claim:** For some constant $c > 0$,
 \[
P[\text{sign}(r.z) = \text{sign}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}
\]
- Repeat $n = O(t)$ times to construct
 \[
x_i = I[\text{sign}(r.z) = +] \quad \text{and} \quad y_i = I[\text{sign}(r_j) = +]
\]
- With probability $9/10$, for some constants $c_1 < c_2$,
 \[
 z_j = 0 \Rightarrow \Delta(x, y) \geq n/2 - c_1\sqrt{n}
 \]
 \[
 z_j = 1 \Rightarrow \Delta(x, y) \leq n/2 - c_2\sqrt{n}
 \]
One-Pass Lower Bound (2/2)

Claim
For some constant \(c > 0\),

\[
\mathbb{P}[\text{sign}(r.z) = \text{sign}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}
\]

▶ If \(z_j = 0\) then \(\text{sign}(r.z)\) and \(\text{sign}(r_j)\) are independent.
▶ If \(z_j = 1\), let \(s = r.z - r_j\), \(A = \{\text{sign}(r.z) = \text{sign}(r_j)\}\):

\[
\mathbb{P}[A] = \mathbb{P}[A|s = 0] \mathbb{P}[s = 0] + \mathbb{P}[A|s \neq 0] \mathbb{P}[s \neq 0]
\]

\[
\mathbb{P}[A|s = 0] = 1 \text{ and } \mathbb{P}[A|s \neq 0] = 1/2
\]

\[
\mathbb{P}[s = 0] = 2c/\sqrt{n} \text{ for some constant } c > 0
\]
Outline

Estimating Point Queries

Estimating F_k

Estimating F_2

Estimating F_0

F_0 lower bound

ℓ_p and Stable Distributions
Problem Definition

Definition
Input is a length m list $S = \langle a_1, \ldots, a_m \rangle$ where

$$a_i = (j_i, \Delta_i) \in [n] \cup \{-M, \ldots, +M\}$$

You can only access the elements sequentially and have memory that is sub-linear in m and n.

Problem
Let $v_j = \sum_{i: j_i = j} \Delta_i$. Note that v_j can be negative. Estimate

$$\ell_p(v) = \|v\|_p = \left(\sum_j v_j^p \right)^{1/p}$$

Theorem
Using only $\tilde{O}(\epsilon^{-2} \log \delta^{-1})$ space we can find a $(1 + \epsilon)$ error approx. with probability $1 - \delta$
p-stable distribution

Definition
A distribution D over \mathbb{R} is called p-stable, if for any $\nu \in \mathbb{R}^n$ and i.i.d. variables X_1, \ldots, X_n variables with distribution D, the random variable

$$\sum_i \nu_i X_i$$

has the same distribution as $\|\nu\|_p X$ where X is a random variable with distribution D.

Example
The Normal(0,1) distribution is 2-stable:

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Cauchy is 1-stable:

$$\frac{1}{\pi} \frac{1}{1 + x^2}$$
Ideal Algorithm for $p = 1$

Algorithm

- Let A be a $k \times n$ matrix where each $A_{i,j}$ is an independent Cauchy distribution. Let A^j be the j column of A.
- Let c be length-k zero vector. For each stream element (j, Δ):
 \[
 c \leftarrow c + \Delta A^j
 \]
- Return $\text{median}(|c_1|, \ldots, |c_k|)$

Lemma

- $c = Av$ but algorithm only needs to maintain length k vector.
- Each $|c_i|$ independently distributed as $\|v\|_p |X|$ where X is a Cauchy random variable.
Lemma
If X is Cauchy distributed, $\text{median}(|X|) = 1$.

Proof.
Follows since $\tan(\pi/4) = 1$ and
\[
F_X(z) := \mathbb{P}[X \leq z] = \int_0^z \frac{2}{\pi} \frac{1}{1 + x^2} = \frac{2}{\pi} \arctan(z)
\]

Lemma
Let Y_1, \ldots, Y_k i.i.d. and $X = \text{median}(Y_1, \ldots, Y_k)$.
\[
\mathbb{P}[F_X(z) \in [1/2 - \epsilon, 1/2 + \epsilon]] \geq 1 - \delta \quad \text{if} \ k = 9\epsilon^{-2} \log \delta^{-1}.
\]

Lemma
For small ϵ sufficiently small. Let X be Cauchy distributed and z satisfy $F_{|X|}(z) \in [1/2 - \epsilon, 1/2 + \epsilon]$. Then, $z \in [1 - 4\epsilon, 1 + 4\epsilon]$.
Thanks!