Outline

Definitions

Entropy and Binomial Coefficients

Extracting Random Bits

Pairwise Independent Functions
Entropy

Definition
Given a discrete random variable X, the entropy of X is

$$H(X) = - \sum_x \mathbb{P}[X = x] \log \mathbb{P}[X = x]$$

Given two discrete random variables X, Y, the conditional entropy of X given Y is $H(X|Y) = \sum_y \mathbb{P}[Y = y] H(X|Y = y)$.

Lemma
For function g, $H(g(X)|X) = 0$. $H(X|g(X)) = 0$ iff g invertible.

Lemma
If X_1, \ldots, X_n are discrete random variables:

$$H(X_1, \ldots, X_n) = \sum_{i \in [n]} H(X_i|X_1, \ldots, X_{i-1})$$

If X_1, \ldots, X_n are independent, then $H(X_1, \ldots, X_n) = \sum_{i \in [n]} H(X_i)$
Mutual Information

Definition
Given discrete random variables X, Y, the mutual information is

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Given discrete random variables X, Y, Z, the conditional mutual information is

$$I(X; Y|Z) = \sum_z \mathbb{P}[Z = z] I(X; Y|Z = z)$$

Lemma
If X_1, \ldots, X_n, Y are discrete random variables:

$$I(X_1, \ldots, X_n; Y) = \sum_{i \in [n]} I(X_i; Y|X_1, \ldots, X_{i-1})$$

If X and Y are independent $I(X; Y) = 0$.
Outline

Definitions

Entropy and Binomial Coefficients

Extracting Random Bits

Pairwise Independent Functions
Entropy and Binomial Coefficients

Lemma

\[
\frac{2^{nH(r/n)}}{n + 1} \leq \binom{n}{r} \leq 2^{nH(r/n)}
\]

where \(H(x) = -x \log x - (1 - x) \log(1 - x) \).

Proof.

- Let \(q = r/n \).
- RHS:
 \[
 1 = \sum_{k=0}^{n} \binom{n}{k} q^k (1 - q)^{n-k} \geq \binom{n}{qn} q^{qn}(1 - q)^{n-qn} = \left(\binom{n}{qn} \right) 2^{-nH(q)}
 \]
- Claim: \(\binom{n}{qn} q^{qn}(1 - q)^{n-qn} \geq \binom{n}{k} q^{k}(1 - q)^{n-k} \) for \(0 \leq k \leq n \)
- LHS: \(1 \leq (n + 1) \frac{n}{qn} q^{qn}(1 - q)^{n-qn} = (n + 1) \frac{n}{qn} 2^{-nH(q)} \)
Proof of Claim

Claim
\[\binom{n}{qn} q^{qn} (1 - q)^{n - qn} \geq \binom{n}{k} q^{k} (1 - q)^{n - k} \text{ for } 0 \leq k \leq n \]

Proof.

- Consider difference of terms:
 \[\binom{n}{k} q^{k} (1 - q)^{n - k} - \binom{n}{k + 1} q^{k + 1} (1 - q)^{n - k - 1} \]
 \[= \binom{n}{k} q^{k} (1 - q)^{n - k} \left(1 - \frac{n - k}{k + 1} \frac{q}{1 - q} \right) \]

- This is non-negative when: \(k \geq qn - 1 + q \)

- Terms increasing up to \(k = qn \) and decreasing afterwards.

\[\square \]
Outline

Definitions

Entropy and Binomial Coefficients

Extracting Random Bits

Pairwise Independent Functions
Extracting Random Bits

Definition
An extraction function Ext takes the value of a random variable X and outputs a sequence of bits y such that, if $\mathbb{P}[|y|=k] \neq 0$,

$$\mathbb{P}[\text{Ext}(X) = y | |y| = k] = 2^{-k}$$

Theorem
Consider a coin with bias $p > 1/2$. For any constant $\delta > 0$ and n sufficiently large:

- There exists an extraction function that takes n independent coin flips and outputs an average of at least $(1 - \delta)nH(p)$ unbiased and independent random bits.
- The average number of unbiased and independent bits output by any extraction function on an input sequence of n independent flips is at most $nH(p)$.
Extracting bits from uniform distributions (1/2)

Lemma
Suppose X is uniformly distributed in $\{0, \ldots, m - 1\}$. Then there is an extraction function for X that outputs on average at least $\lfloor \log m \rfloor - 1$ unbiased and independent bits.

Proof.

- Let $\alpha = \lfloor \log m \rfloor$ and define the extraction function recursively
- If $X \leq 2^\alpha - 1$ output the α-bit representation of X.
- If $X \geq 2^\alpha$, use the extraction function on $X - 2^\alpha$ since this is uniform on $\{0, \ldots, m - 2^\alpha - 1\}$
- For each k, we get uniform distribution over k-bit sequences.
- Remains to show that we expect to output $\lfloor \log m \rfloor - 1$ unbiased and independent bits.
Extracting bits from uniform distributions (2/2)

- Let Y be the number of bits output.
- By induction on m:

\[
\mathbb{E}[Y] = \frac{2^\alpha}{m} \alpha + \frac{m - 2^\alpha}{m} \mathbb{E} \text{[bits from\{0, \ldots, m - 2^\alpha - 1\}]} \\
\geq \frac{2^\alpha}{m} \alpha + \frac{m - 2^\alpha}{m} (\lfloor \log(m - 2^\alpha) \rfloor - 1)
\]

- Some algebra gives this is at least $\alpha - 1$ completing induction.
Theorem
Consider coin with bias \(p > 1/2 \). For any constant \(\delta > 0 \) and \(n \) sufficiently large, there exists a function that takes \(n \) independent coin flips and outputs an average of at least \((1 - \delta)nH(p)\) independent and unbiased bits.

Proof.
- Let \(Z \) be number of heads seen.
- Conditioned on \(Z = k \), each of sequence \(\binom{n}{k} \) sequences is equally likely. Can expect to extract \(\left\lfloor \log \binom{n}{k} \right\rfloor - 1 \) bits.
- Let \(B \) be total number of bits extracted:

\[
\mathbb{E}[B] = \sum_{k=0}^{n} \mathbb{P}[Z = k] \mathbb{E}[B|Z = k] \geq \sum_{k=0}^{n} \mathbb{P}[Z = k] \left(\left\lfloor \log \binom{n}{k} \right\rfloor - 1 \right)
\]
Extracting Bits from Biased Coin: Upper Bound (2/2)

- Consider only k such that $n/2 \leq n(p - \epsilon) \leq k \leq n(p + \epsilon)$:

$$
\mathbb{E}[B] \geq \sum_{k=\lceil n(p-\epsilon) \rceil}^{\lceil n(p+\epsilon) \rceil} \mathbb{P}[Z = k] \left(\left\lfloor \log \binom{n}{k} \right\rfloor - 1 \right)
$$

- Relating binomial coefficients to entropy:

$$
\left\lfloor \log \binom{n}{k} \right\rfloor - 1 \geq \left(\log \frac{2^{nH(p+\epsilon)}}{n+1} \right) - 2
$$

- Appealing to Chernoff bound:

$$
\sum_{k=\lceil n(p-\epsilon) \rceil}^{\lceil n(p+\epsilon) \rceil} \mathbb{P}[Z = k] \geq (1 - 2e^{-n\epsilon^2/3p})
$$

- Putting it together:

$$
\mathbb{E}[B] = (H(p + \epsilon) - \log(n + 1) - 2)(1 - 2e^{-n\epsilon^2/3p}) \geq (1 - \delta)nH(p)
$$

where the last inequality is for sufficiently large n.
Extracting Bits from Biased Coin Tosses: Lower Bound

Theorem
Consider a coin with bias \(p > 1/2 \). The average number of bits output by any extraction function on an input sequence of \(n \) independent flips is at most \(nH(p) \).

Proof.
- Consider extraction function \(\text{Ext} \).
- If \(x \) occurs with probability \(q \), then \(|\text{Ext}(x)| \leq \log(1/q) \) since:
 \[
 q2^{|\text{Ext}(x)|} \leq 1
 \]
- Let \(B \) be number of bits extracted by \(\text{Ext} \):
 \[
 \mathbb{E}[B] = \sum_x \mathbb{P}[X = x] |\text{Ext}(x)| \leq \sum_x \mathbb{P}[X = x] \log \frac{1}{\mathbb{P}[X = x]}
 \]
Pairwise Independent Functions

- Let n be a prime and $a, b \in R \{0, 1, \ldots, n-1\}$.
- Consider $Z = (R_0, \ldots, R_{n-1})$ where $R_i = ai + b \pmod{n}$.
- Entropy of each R_i: $H(R_i) = \log n$
- Entropy of Z: $H(Z) = 2\log n$

Lemma

For discrete random variable X and function g: $H(g(X)) \leq H(X)$ with equality iff g is invertible.

Proof.

- $H(X, g(X)) = H(X) + H(g(X)|X) = H(X)$
- $H(X, g(X)) = H(g(X)) + H(X|g(X)) \geq H(g(X))$.

- $Z = f(a, b)$ where f is invertible. Hence,

$$H(Z) = H(a, b) = H(a) + H(b) = 2\log n$$