Outline

Schwartz-Zippel

String Equality and Some Communication Complexity

Pattern Matching

Readings
Schwartz-Zippel

Problem
Given three n variable polynomials P_1, P_2, P_3 over the field \mathbb{F}. Can you test if
\[P_1(x_1, \ldots, x_n) \times P_2(x_1, \ldots, x_n) = P_3(x_1, \ldots, x_n) \]
\]
\[Q(x_1, \ldots, x_n) = P_1(x_1, \ldots, x_n) \times P_2(x_1, \ldots, x_n) - P_3(x_1, \ldots, x_n) \]
\]
faster than multiplying the polynomials? Equivalently, is
\[Q(x_1, \ldots, x_n) = 0 \]

zero for all x_1, \ldots, x_n?

Theorem (Schwartz-Zippel)
Let $Q(x_1, \ldots, x_n)$ be a non-zero multivariate polynomial \mathbb{F} of total degree d. Fix any finite set $S \subset \mathbb{F}$ and let r_1, \ldots, r_n be chosen independently and uniformly at random from S. Then,
\[\mathbb{P}[Q(r_1, \ldots, r_n) = 0] \leq \frac{d}{|S|} \]
Schwartz-Zippel Proof

- Induction on n: For $n = 1$, because Q has at most d roots,
 \[\mathbb{P}[Q(r_1) = 0] \leq d/|S| \]

- For induction step define Q_i for $0 \leq i \leq k$:
 \[Q(x_1, \ldots, x_n) = \sum_{i=0}^{k} x^i Q_i(x_1, \ldots, x_n) \]
 where k is maximum such that $Q_k(x_2, \ldots, x_n) \neq 0$

- Since total degree of Q_k is at most $d - k$,
 \[\mathbb{P}[Q_k(r_2, \ldots, r_n) = 0] \leq (d - k)/|S| \]

- Consider $q(x) = Q(x, r_2, \ldots, r_n)$,
 \[\mathbb{P}[q(r_1) = 0|Q_k(r_2, \ldots, r_n) \neq 0] \leq k/|S| \]

- Putting together gives $\mathbb{P}[Q(r_1, \ldots, r_n) = 0]$ at most
 \[\mathbb{P}[Q_k(r_2, \ldots, r_n) = 0] + \mathbb{P}[q(r_1) = 0|Q_k(r_2, \ldots, r_n) \neq 0] \leq d/|S| \]
Bipartite Perfect Matching

Definition
Let $G = (U, V, E)$ be a bipartite graph on $U = \{u_1, \ldots, u_n\}$ and $V = \{v_1, \ldots, v_n\}$. $M \subset E$ is a matching if each vertex occurs at most once in M. If $|M| = n$ then we say M is a perfect matching.

Theorem (Edmonds’ Theorem)
Given G, let A be $n \times n$ matrix where

$$A_{i,j} = \begin{cases} x_{ij} & \text{if } (u_i, v_j) \in E \\ 0 & \text{if } (u_i, v_j) \in E \end{cases}$$

Then $\det(A)$ is multivariate polynomial with maximum degree n. $\det(A) \equiv 0$ iff G has a perfect matching.

Schwartz-Zippel result gives randomized method for seeing if G has perfect matching. But it’s actually not that interesting...
Outline

Schwartz-Zippel

String Equality and Some Communication Complexity

Pattern Matching

Readings
Verifying Equality of Strings

Problem
Suppose Alice has binary string \((a_1, \ldots, a_n)\) and Bob has binary string \((b_1, \ldots, b_n)\). How many bits to this need to communicate to conclude (with high probability) that the strings are equal?

Protocol

1. Alice and Bob defines \(a = \sum_{i \in [n]} a_i 2^{n-i}\) and \(b = \sum_{i \in [n]} b_i 2^{n-i}\)
2. Alice randomly picks a prime \(p \leq \tau = tn \log tn\)
3. Alice transmits \(F_p(a) = a \mod p\) and \(p\) to Bob
4. Bob computes \(F_p(b)\): Returns “equal” iff \(F_p(a) = F_p(b)\)

Theorem
Protocol uses \(O(\log(tn))\) bits of communication and is correct with probability \(1 - O(1/t)\).
Verifying Equality of Strings: Analysis

- If $a = b$ then $F_p(a) = F_p(b)$
- If $a \neq b$ and $F_p(a) = F_p(b)$ then p divides $-2^n < a - b < 2^n$

Fact

There are at most n distinct prime dividing a number less than 2^n. For any τ, the number of primes smaller than τ is $\pi(\tau) \sim \tau / \ln \tau$.

- If $a \neq b$ then

 $$\mathbb{P}[F_p(a) = F_p(b)] \leq \frac{n}{\pi(\tau)} = O \left(\frac{n \ln(tn)}{tn \log(tn)} \right) = O \left(\frac{1}{t} \right)$$
Verifying Equality of Strings: What about deterministic?

Theorem

Any deterministic protocol that involves one message from Alice to Bob requires n bits of communication.

Proof.

- A length $k < n$ message m from Alice partitions set strings into 2^k sets:

 $$S_m = \{a' : f(a') = m\}$$

- There exists a set S_m that has at least $2^{n-k} \geq 2$ elements.
- Let $a \in S_m$ and $b \in S_m$: Impossible for Bob to tell if $a = b$
Greater Than (1/2)

Problem
Alice and Bob have non-equal binary strings \((a_1, \ldots, a_n)\) and \((b_1, \ldots, b_n)\). Is \(\sum_{i \in [n]} a_i 2^{n-i} < \sum_{i \in [n]} b_i 2^{n-i}\)?

Let \(a[i, j] = (a_i, \ldots, a_j)\) and \(b[i, j] = (b_i, \ldots, b_j)\). If we find \(\max j\) with \(a[1, j] = b[1, j]\) then value of \(a_{j+1}\) or \(b_{j+1}\) determines answer.

Protocol

▶ 1st message: Determine if \(a[1, n/2] = b[1, n/2]\)
▶ If equal: 2nd message determines if \(a[1, 3n/4] = b[1, 3n/4]\)
▶ If not equal: 2nd message determines if \(a[1, n/4] = b[1, n/4]\)
▶ Continue binary search in this manner...

Theorem

Protocol uses \(O(\log(tn) \log n)\) bits of communication and is correct with probability \(1 - O((\log n) / t)\).
Problem

Alice and Bob have non-equal binary strings \((a_1, \ldots, a_n)\) and \((b_1, \ldots, b_n)\). Is \(\sum_{i \in [n]} a_i 2^{n-i} < \sum_{i \in [n]} b_i 2^{n-i}\)?

Problem

What if we are only allowed \(p\) messages passed back and forth?

- Instead of testing \(a[1, n/2] = b[1, n/2]\), test

 \[
 a[1, n^{1/p}] = b[1, n^{1/p}]
 \]

 \[
 a[n^{1/p} + 1, 2n^{1/p}] = b[n^{1/p} + 1, 2n^{1/p}]
 \]

 \[
 \vdots
 \]

 \[
 a[n - 2n^{1/p} +, n - n^{1/p}] = b[n - 2n^{1/p} +, n - n^{1/p}]
 \]

- Protocol uses \(O(n^{1/p} p \log(tn))\) bits of communication and is correct with probability \(1 - O(n^{1/p} p / t)\).
Other Communication Complexity Problems
Other Communication Complexity Problems

Theorem (Razborov 1990)

If Alice has $x \in \{0, 1\}^n$ and Bob has $y \in \{0, 1\}^n$, then determining if there exists i such that $x_i = y_i = 1$ with probability $9/10$ requires $\Theta(n)$ bits of communication.

Theorem (Brody and Charikrabarti 2009)

If Alice has $x \in \{0, 1\}^n$ and Bob has $y \in \{0, 1\}^n$, then determining Hamming distance up to additive error \sqrt{n} with probability $9/10$ requires $\Theta(n)$ bits of communication.
Outline

Schwartz-Zippel

String Equality and Some Communication Complexity

Pattern Matching

Readings
Pattern Matching (1/2)

Problem

Given “text” \(X = x_1x_2 \ldots x_n \) and “pattern” \(Y = y_1y_2 \ldots y_m \) (assume binary and \(m < n \)). Does there exist \(j \) with

\[
x_jx_{j+1} \ldots x_{j+m-1} = y_1y_2 \ldots y_m
\]

- Define \(X(j) = x_jx_{j+1} \ldots x_{j+m-1} \)
- Brute force: test \(X(j) = Y \) for each \(j \) in \(O(mn) \) time
- Viewing \(X(j) \) as integer \(\sum_{i \in [m]} x_{j+m-i}2^{i-1} \)

\[
X(j + 1) = 2[X(j) - 2^{m-1}x_j] + x_{j+m}
\]

Therefore

\[
F_p(X(j + 1)) = 2[F_p(X(j)) - 2^{m-1}x_j] + x_{j+m} \pmod{p}
\]

where \(p \) is some prime less than \(\tau = n^2m\log n^2m \).
Pattern Matching (2/2)

Problem
Given “text” \(X = x_1x_2 \ldots x_n \) and “pattern” \(Y = y_1y_2 \ldots y_m \) (assume binary and \(m < n \)). Does there exist \(j \) with

\[
x_jx_{j+1} \ldots x_{j+m-1} = y_1y_2 \ldots y_m
\]

Theorem
Can perform pattern matching in \(O(n + m) \) time with probability of false match \(O(1/n) \)

- Compute \(F_p(X(j)) \) for all \(j \) and \(F_p(Y) \) in \(O(n + m) \) time.
- Probability of false match of \(X(j) \) and \(Y \) is \(O(1/n^2) \)
- Final error probability follows by union bound.
Readings

For next time, please make sure you’ve read:

- Chapter 7–7.6 [MR].