Outline

Markov Chains

Random Walks on Graphs
Motivating Example

- An algorithm for 2-SAT:
 1. Pick arbitrary assignment.
 2. Pick an unsatisfied clause: randomly flip the value assigned to one of the two variables.
 3. Repeat Step 2 until there are no unsatisfied clauses.
- Let $x(t)$ be the assignment at time t.
- Consider $X(t) = n - \Delta(x(t), y)$ for a fixed satisfying assignment y, i.e., the number of variables that are set the same in both $x(t)$ and y
- $X(t+1) = X(t) \pm 1$ and
 \[\mathbb{P} \left[X(t+1) = X(t) + 1 \right] \geq 1/2 \]
- How long until we terminate?
A Markov chain is a discrete-time stochastic process that defines a sequence of random variables \((X_0, X_1, X_2, \ldots)\) and is defined by:

- **State space:** e.g., \(X_t \in \{1, \ldots, n\}\)
- **Transition probabilities:** \(P_{ij} = \Pr[X_t = j|X_{t-1} = i]\)
- **Initial distribution for** \(X_0\).

Memoryless: \(X_t\) only depends on \(X_{t-1}\):

\[
\Pr[X_t = i_t|X_{t-1} = i_{t-1}, \ldots, X_1 = i_1, X_0 = i_0] = \Pr[X_t = i_t|X_{t-1} = i_{t-1}] = P_{i_{t-1}i_t}
\]
State Probability Vector and Stationary Distribution

Definition
Let $q_i^{(t)} = \mathbb{P}[X_t = i]$. The distribution of the chain at time t is the row vector $(q_1^{(t)}, q_2^{(t)}, \ldots, q_n^{(t)})$.

Lemma
$q^{(t)} = q^{(0)} P^t$ where P be the matrix whose (i, j)-th entry is P_{ij}.

Definition
A stationary distribution for a Markov chain with transition matrix P is a probability distribution π such that $\pi = \pi P$.
Definition
The underlying graph of a Markov chain is a directed graph $G = (V, E)$ where $V = [n]$ and $(i, j) \in E$ iff $P_{ij} > 0$.

Definition
A Markov chain is irreducible if its underlying graph consists of a single strong component. (Recall that a strong component of a directed graph is a maximal subgraph C of G such that for any vertices i and j in C, there is a directed path from i to j.)
Transient States and Persistent States

Probability that t is the first time that the chain visits state j if it starts at state i:

$$r_{ij}^{(t)} = \mathbb{P} [X_t = j \text{ and } X_s \neq j \text{ for all } 1 \leq s < t | X_0 = i]$$

Probability that the chain ever visits state j if it starts at state i:

$$f_{ij} = \sum_{t>0} r_{ij}^{(t)}$$

Expected time to until a visit to state j if it starts at state i:

$$h_{ij} = \sum_{t>0} tr_{ij}^{(t)} \text{ if } f_{ij} = 1 \text{ and } h_{ij} = \infty \text{ otherwise}$$

Definition
If $f_{ii} < 1$ then state i is transient. If $f_{ii} = 1$ then state i is persistent. Those persistent states i for which $h_{ii} = \infty$ are said to be null persistent and those for which $h_{ii} \neq \infty$ are said to be non-null persistent.
Definition
The periodicity of state i is the maximum integer T for which there exists an initial distribution $q^{(0)}$ and positive integer a such that for all t we have: $q_i^{(t)} > 0$ implies $t \in \{a + Ti : i \geq 0\}$. If $T > 1$ then state is periodic and aperiodic otherwise. If every state is aperiodic then the Markov chain is aperiodic.

Definition
An ergodic state is one that is aperiodic and non-null persistent. A Markov chain is ergodic if all states are ergodic.
Fundamental Theorem of Markov Chains

Theorem
Any irreducible, finite, and aperiodic Markov chain has the following properties:

1. All states are ergodic.
2. There is a unique stationary distribution π with $\pi_i > 0$.
3. $f_{ii} = 1$ and $h_{ii} = 1/\pi_i$.
4. Let $N(i, t)$ be the number of times the Markov chain visits state i in t steps. Then,
\[
\lim_{t \to \infty} \frac{N(i, t)}{t} = \pi_i
\]
Outline

Markov Chains

Random Walks on Graphs
Random Walks on Graphs

A connected, non-bipartite, undirected graph \(G = (V, E) \) defines Markov Chain \(M_G \) with states \(V \) and transition matrix:

\[
P_{uv} = \begin{cases}
\frac{1}{d(u)} & \text{if } (u, v) \in E \\
0 & \text{otherwise}
\end{cases}
\]

where \(|V| = n \) and \(|E| = m \).

Lemma

\(M_G \) is irreducible & aperiodic because it’s connected & bipartite.

Lemma (Stationary Distribution of \(M_G \))

For all \(v \in V \), \(\pi_v = \frac{d(v)}{2m} \).

Proof.

Let \(\Gamma(v) \) denote the graph neighborhood of \(v \):

\[
\sum_{u, v} \pi_u P_{u,v} = \sum_{u \in \Gamma(v)} \frac{d(u)}{2m} \cdot \frac{1}{d(u)} = \frac{d(v)}{2m} = \pi_v
\]

\(\square \)
Hitting Time

Definition
The hitting time h_{uv} is the expected time taken by a random walk starting at node u until it arrives at v.

Theorem
For any edge $(u, v) \in E$, $h_{vu} < 2m$.

Proof.
- By Fundamental Theorem: $h_{uu} = \pi_u^{-1} = 2m/d(u)$
- But we can also write h_{uu} as

$$h_{uu} = \frac{1}{d(u)} \sum_{w \in \Gamma(u)} (1 + h_{wu})$$

- Hence,

$$2m = \sum_{w \in \Gamma(u)} (1 + h_{wu}) > h_{vu}$$
Cover Time (1/2)

Definition
$C_u(G)$ denote the expected time to visit every node after starting at u. The cover time of G is $C(G) = \max_u C_u(G)$.

Theorem
$C(G) < 4mn$ where $|V| = n$ and $|E| = m$.

Corollary
Expected time of at 2-SAT algorithm is $O(n^2)$.
Proof.

Let T be a spanning tree of G and $v_0 \in V$.

Let $v_0, v_1, \ldots, v_{2n-2} = v_0$ be the vertices visited in a traversal of T that traverses each edge exactly once.

Then

$$C_{v_0}(G) \leq \sum_{j=0}^{2n-3} h_{v_j, v_{j+1}}$$

We know $h_{v_j, v_{j+1}} \leq 2m$ because (u, v) is an edge.

Hence, $C_{v_0}(G) \leq 2(n - 1)2m$ for all v_0.

\[\square\]
Readings

For next time, please make sure you’ve read:

- Chapter 4: 4.3 (4 pages)
- Chapter 5: 5.1, 5.2, 5.5 (12 pages)