Outline

Set Balancing

Routing in Boolean Hypercube

Readings
Set Balancing

Let A_1, \ldots, A_n be subsets of $[n]$ such that $|A_i| = n/2$. We want to partition $[n]$ into B and C such that

$$\max_i |A_i \cap B| - |A_i \cap C|$$

is minimized.

Hint: Use $\mathbb{P}[|X - \mathbb{E}[X]| < \delta \mu] \leq 2 \exp(-\mathbb{E}[X] \delta^2/4)$.
Set Balancing Algorithm and Analysis

Algorithm: Consider a random partition!

Lemma
\[
\max_i \left| |A_i \cap B| - |A_i \cap C| \right| \leq 4\sqrt{n \ln n} \text{ with prob. at least } 1 - 2n^{-3}.
\]

Proof.

- Let \(X_j = 1 \) if \(j \)-th element of \(A_i \) is in \(C \) and 0 otherwise.
- Then \(X = \sum_j X_j = |A_i \cap C| \) and \(E[X] = n/4 \)
- \(\left| |A_i \cap B| - |A_i \cap C| \right| = \left| n/2 - 2|A_i \cap C| \right| = 2\left| E[X] - X \right| \)
- By an application of the Chernoff bound:
 \[
P \left[2\left| E[X] - X \right| \geq 4\sqrt{n \ln n} \right] = P \left[\left| E[X] - X \right| \geq 8\sqrt{n^{-1} \ln n} \cdot E[X] \right] \leq 2e^{-(n/4)(64n^{-1} \ln n)/4} = 2n^{-4}
 \]
- Apply union bound over all \(i \).
Outline

Set Balancing

Routing in Boolean Hypercube

Readings
Routing in Boolean Hypercube

Boolean hypercube:
- $N = 2^n$ nodes where each is labeled by a length $\{0, 1\}^n$
- Edge between $x \in \{0, 1\}^n$ and $y \in \{0, 1\}^n$ iff $\Delta(x, y) = 1$.

Problem: Let π be a permutation of $[N]$
- For $i \in [N]$, packet v_i needs routed from i-th node to $\pi(i)$-th node.
- At each step, a packet may traverse an edge (or stay still).
- At most one packet can traverse an edge in the same step.

Want an “Oblivious Routing”:
- Pick route ρ_i for v_i that only depends only on $\pi(i)$.
- Pick rule for deciding who gets precedence when two packets want to use same edge.
The Algorithm

- For each v_i, pick random intermediate destination $\sigma(i)$
- **Phase 1**: Route each v_i from i-th node to $\sigma(i)$-th node
- **Phase 2**: Route each v_i from $\sigma(i)$-th node to $\pi(i)$-th node
- Use “first in, first out” queueing policy.

In each phase, route using “bit-fixing”:

- At each step, forward v_i to neighboring node whose label agrees with longest prefix of label of $\sigma(i)$-th node
- E.g., to get from (1011) to (0110), the route would be $(1011) \rightarrow (0011) \rightarrow (0111) \rightarrow (0110)$

Once two paths diverge, they don’t merge again.
The Result

Theorem

*All packets get routed to final destination in $14n$ steps with probability at least $1 - 2/N$.***

For comparison (we won’t prove this):

Theorem

For any deterministic oblivious routing algorithm, there is a permutation π that requires $\Omega(\sqrt{2^m/n})$ time.
Let ρ_i be the path taken by v_i in Phase 1.

Let $H_{i,j} = 1$ if ρ_i and ρ_j intersect and 0 otherwise ($H_{i,i} = 0$).

$H_{i,1}, H_{i,2}, \ldots, H_{i,N}$ are independent Poisson trials for each i.

Thm: Time for v_i to get to intermediate destination is

$$\text{Length of Path} + \text{Delays} \leq n + \sum_j H_{i,j}$$

Thm: With probability at least $1 - 2^{-6n}$, $\sum_j H_{i,j} \leq 6n$

By union bound, with probability at least $1 - 2^{-5n} \geq 1 - 1/N$, all packets get to intermediate destination in at most $7n$ time.

Analysis of Phase 2 is identical.
Analysis Part 1: Expressing delay in terms of $H_{i,j}$ (1/2)

Theorem

Total delay incurred by v_i is at most $\sum_j H_{i,j}$.

Proof.

- Let route of v_i be $\rho_i = (e_1, e_2, \ldots, e_k)$.
- Let S be the set of $\sum_j H_{i,j}$ packets (other than v_i) whose routes pass through an edge in ρ_i.
- Say $v \in S$ leaves ρ_i at the time step at which it traverses an edge in ρ_i for the last time.
- If a packet is ready to traverse edge e_j at time t, we define its lag at time t to be $t - j$. Final lag for v_i is the delay.
- Claim: If lag of v_i when it traverses e_k is ℓ then for each $\ell' \leq \ell$ there exists a $v \in S$ that leaves ρ_i with lag ℓ'.
- Hence $|S| \geq (\text{final lag of } v_i) = (\text{total delay incurred by } v_i)$.

\[\square\]
Claim

If lag of \(v_i \) when it traverses \(e_k \) is \(\ell \) then for each \(\ell' < \ell \) there exists a \(v \in S \) that leaves \(\rho_i \) with lag \(\ell' \).

Proof.

- There exists a packet in \(S \) that has lag \(\ell' \) at some stage:
 1. Consider the step when \(v_i \) increases from lag \(\ell' \) to \(\ell' + 1 \) because it cannot use some edge \(e \)
 2. At this step, the packet that does use \(e \) has lag \(\ell' \).

- Let \(t' \) be the last time at which a packet in \(S \) has lag \(\ell' \).
 1. All packets waiting to traverse \(e_j \) for \(j = t' - \ell' \) have lag \(\ell' \).
 2. The packet that traverses \(e_j \) still has lag \(\ell' \) unless it leaves \(\rho_i \).
 3. So if it doesn’t leave \(\rho_i \), \(t' \) wasn’t the last time at which a packet in \(S \) has lag \(\ell' \).
Analysis Part 2: Bounding tail probability of delay (1/2)

Let $h_i = \sum_j H_{i,j}$. By Chernoff bound, $\mathbb{P}[h_i \geq 6\mathbb{E}[h_i]] \leq 2^{-6\mathbb{E}[h_i]}$.

Lemma

$\mathbb{E}[h_i] \leq n/2$ and so $\mathbb{P}[h_i \geq 6n] \leq 2^{-6n}$.

Proof.

- Let $T(e)$ be the number of routes that include edge e.
- $h_i \leq \sum_{e \in \rho_i} T(e)$ and, by linearity of expectation:

 \[
 \mathbb{E}[h_i] \leq \sum_{e \in \rho_i} \mathbb{E}[T(e)]
 \]

- Claim: $\mathbb{E}[T(e)] = 1/2$.
- Hence, $\mathbb{E}[h_i] \leq \sum_{e \in \rho_i} \mathbb{E}[T(e)] = |\rho_i|/2 \leq n/2$
Analysis Part 2: Bounding tail probability of delay (2/2)

Claim

\[\mathbb{E} [T(e)] = \frac{1}{2}. \]

Proof.

- Expected number of bits to be fixed is \(n/2 \): \(\mathbb{E} [|\rho_j|] = n/2. \)
- By linearity of expectation: \(\mathbb{E} \left[\sum_j |\rho_j| \right] = Nn/2. \)
- Each edge in a route contributes to a \(T(e) \) and vice versa:

\[
\sum_j |\rho_j| = \sum_e T(e)
\]

- Total number of edges is \(Nn \) and \(\mathbb{E} [T(e)] \) is the same for all \(e \).
Outline

Set Balancing

Routing in Boolean Hypercube

Readings
For next time, please make sure you’ve read:

- Chapter 4: Up to and including 4.2 (12 pages)