Recap: Counting Independent Sets

- If we can sample independent sets efficiently, then we can count the number, $|\Omega(G)|$, of independent sets efficiently as follows...
- Let $G_m = G$ and construct G_{i-1} be removing an arbitrary edge from G_i. The $\Omega(G_i)$ be the set of independent sets of G_i.
- Then,
 \[
 |\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \ldots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|
 \]
- Let $r_i = |\Omega(G_i)|/|\Omega(G_{i-1})|$ and note that $|\Omega(G_0)| = 2^n$:
 \[
 |\Omega(G)| = 2^n \prod_{i \in [m]} r_i
 \]
- Hence if we find estimates \tilde{r}_i such that
 \[
 (1 - \epsilon/m)r_i \leq \tilde{r}_i \leq (1 + \epsilon/(2m))r_i
 \]
 then $2^n \prod_{i \in [m]} \tilde{r}_i$ is a $(1 + \epsilon)$ approximation of $|\Omega(G)|$
Recap: Estimating r_i

Note that

$$1 \geq r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|} = \frac{|\Omega(G_i)|}{|\Omega(G_i)| + |\Omega(G_{i-1}) \setminus \Omega(G_i)|} \geq 1/2$$

where last line follows since every set in $\Omega(G_{i-1}) \setminus \Omega(G_i)$ includes both end points of the edge removed to generate G_{i-1} and so

$$|\Omega(G_{i-1}) \setminus \Omega(G_i)| \leq |\Omega(G_i)|$$

Hence, if we sample

$$(3 \ln(2/\delta))/((\epsilon/(2m))^2 r_i) \leq 24m^2 \ln(2/\delta))/\epsilon^2$$

independent sets uniformly from $\Omega(G_{i-1})$ and return the fraction that are also independent sets in G_i, we get a $1 + \epsilon/(2m)$ approximation for r_i with probability $1 - \delta$.

Setting $\delta = 1/m^2$ ensures we get good enough estimates for all r_1, r_2, \ldots, r_m with probability at least $1 - 1/m$.

3/9
But how do we sample independent sets?

- Design a Markov chain whose state space is the set of elements we want to sample and whose stationary distribution is the distribution we want to sample from.
- Let X_0, X_1, X_2, \ldots, be a run of the Markov chain. For sufficiently large r, $X_r, X_{2r}, X_{3r}, \ldots$ are nearly independent samples from the required distribution.
- . . . this is Markov Chain Monte Carlo Method.
Design a Markov Chain

Want to design Markov chain whose states Ω are exactly the independent sets and whose stationary distribution is uniform.

First attempt:
- Let the states be the independent sets of a graph.
- If the current state is independent set X_t:
 - Let X_{t+1} be chosen uniformly at randomly from
 $$N(X_t) = \{Y : \text{independent set formed by adding/removing a node from } X_t\}$$

Problem is that stationary distribution might not be uniform!
Making Stationary Distribution Uniform

Lemma
Consider Markov Chain with finite state space \(\Omega \) and transition matrix \(P \). For each state \(i \) define \(N(i) = \{ j : P_{i,j} > 0 \} \) and \(M \geq \max |N(j)| \). Then, Markov chain \((\Omega, Q) \) where

\[
Q_{i,j} = \begin{cases}
1/M & \text{if } i \neq j \text{ and } j \in N(i) \\
0 & \text{if } i \neq j \text{ and } j \notin N(i) \\
1 - |N(i)|/M & \text{if } i = j
\end{cases}
\]

has an uniform stationary distribution.

Proof.
If \(\pi_1 = \pi_2 = \pi_3 \ldots \) then

\[
[\pi Q]_i = \pi_i (1 - |N(i)|/M) + \sum_{j \in N(i): j \neq i} \pi_j / M = \pi_i
\]
New Markov Chain for Independent Sets

New attempt:

- Let the states be the independent sets of a graph.
- If the current state is independent set X_t:
 - Pick random vertex v from V
 - If $v \in X_t$, let $X_{t+1} = X_t \setminus \{v\}$.
 - If $v \notin X_t$ and $X_t \cup \{v\}$ is independent, let $X_{t+1} = X_t \cup \{v\}$.
 - Otherwise $X_{t+1} = X_t$.

Note that the transition probability between any different states is $1/|V|$ and previous lemma implies stationary distribution is uniform.
Metropolis Algorithm

Suppose we want a stationary distribution that isn’t uniform?

Theorem

For a finite state space Ω and neighborhoods $N(i)$ for each state i, let $M \geq \max_i N(i)$. Then a Markov chain with transition matrix

$$Q_{i,j} = \begin{cases}
\min(1, \pi_j/\pi_i)/M & \text{if } i \neq j \text{ and } j \in N(i) \\
0 & \text{if } i \neq j \text{ and } j \notin N(i) \\
1 - \sum_{k \in N(i): k \neq i} \min(1, \pi_k/\pi_i)/M & \text{if } i = j
\end{cases}$$

has the stationary distribution where π_i is the weight of state i.

Proof.

$$[\pi Q]_i = \pi_i \left(1 - \sum_{k \in N(i): k \neq i} \frac{\min(1, \pi_k/\pi_i)}{M}\right) + \sum_{j \in N(i): j \neq i} \pi_j \cdot \frac{\min(1, \pi_i/\pi_j)}{M}$$

$$= \pi_i + \sum_{j \in N(i): j \neq i} \left(\pi_j \cdot \frac{\min(1, \pi_i/\pi_j)}{M} - \pi_i \cdot \frac{\min(1, \pi_j/\pi_i)}{M}\right) = \pi_i$$
Weighting the Independent Sets

For independent set X, suppose we want

$$
\pi_X = \frac{\lambda^{|X|}}{\sum_{Y \text{independent}} \lambda^{|Y|}}
$$

- Let the states be the independent sets of a graph.
- If the current state is independent set X_t:
 - Pick random vertex v from V.
 - If $v \in X_t$, let $X_{t+1} = X_t \setminus \{v\}$ with probability $\min(1, 1/\lambda)$.
 - If $v \notin X_t$ and $X_t \cup \{v\}$ is independent, let $X_{t+1} = X_t \cup \{v\}$ with probability $\min(1, \lambda)$.
 - Otherwise $X_{t+1} = X_t$.

Note that the transition probability between different states has the required format for the previous theorem to apply.