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Motivating Example

I An algorithm for 2-SAT:

1. Pick arbitrary assignment.
2. Pick an unsatisfied clause: randomly flip the value assigned to one of

the two variables.
3. Repeat Step 2 until there are no unsatisfied clauses.

I Let x (t) be the assignment at time t.

I Consider X (t) = n −∆(x (t), y) for a fixed satisfying assignment y ,
i.e., the number of variables that are set the same in both x (t) and y

I X (t+1) = X (t) ± 1 and

P
[
X (t+1) = X (t) + 1

]
≥ 1/2

since either 1 or 2 of the variables in the clause we pick have a
different assignment that in y .

I How long until we terminate?
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Markov Chain

A Markov chain is a discrete-time stochastic process that defines a
sequence of random variables (X0,X1,X2, . . .) and is defined by:

I State space: e.g., Xt ∈ {1, . . . , n}
I Transition probabilities: Pij = P [Xt = j |Xt−1 = i ]

I Initial distribution for X0.

Memoryless: Xt only depends on Xt−1:

P [Xt = it |Xt−1 = it−1, . . . ,X1 = i1,X0 = i0] = P [Xt = it |Xt−1 = it−1]

= Pit−1it
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State Probability Vector and Stationary Distribution

Definition
Let q

(t)
i = P [Xt = i ]. The distribution of the chain at time t is the row

vector (q
(t)
1 , q

(t)
2 , . . . , q

(t)
n ).

Lemma
q(t) = q(0)P t where P be the matrix whose (i , j)-th entry is Pij .

Proof.
Follows since q

(t)
j =

∑
i q

(t−1)
i Pi,j .

Definition
A stationary distribution for a Markov chain with transition matrix P is a
probability distribution π such that π = πP.
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Underlying Graphs and Irreducible Markov Chains

Definition
The underlying graph of a Markov chain is a directed graph G = (V ,E )
where V = [n] and (i , j) ∈ E iff Pij > 0.

Definition
A Markov chain is irreducible if its underlying graph consists of a single
strong component. (Recall that a strong component of a directed graph
is a maximal subgraph C of G such that for any vertices i and j in C ,
there is a directed path from i to j .)
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Transient States and Persistent States
Probability that t is the first time that the chain visits state j if it starts
at state i :

r
(t)
ij = P [Xt = j and Xs 6= j for all 1 ≤ s < t|X0 = i ]

Probability that the chain ever visits state j if is starts at state i :

fij =
∑
t>0

r
(t)
ij

Expected time to until a visit to state j if is starts at state i :

hij =
∑
t>0

tr
(t)
ij if fij = 1 and hij =∞ otherwise

Definition
If fii < 1 then state i is transient. If fii = 1 then state i is persistent.
Those persitent states i for which hii =∞ are said to be null peristent
and those for which hii 6=∞ are said to be non-null persistent.
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Periodicity and Ergodicity

Definition
The periodicity of state i is the maximum integer T for which there
exists an initial distribution q(0) and positive integer a such that for all t

we have: q
(t)
i > 0 implies t ∈ {a + Ti : i ≥ 0}. If T > 1 then state is

periodic and aperiodic otherwise. If every state is aperiodic then the
Markov chain is aperiodic.

Definition
An ergodic state is one that is aperiodic and non-null persistent. A
Markov chain is ergodic if all states are ergodic.
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Fundamental Theorem of Markov Chains

Theorem
Any irreducible, finite, and aperiodic Markov chain has the following
properties:

1. All states are ergodic.

2. There is a unique stationary distribution π with πi > 0.

3. fii = 1 and hii = 1/πi .

4. Let N(i , t) be the number of times the Markov chain visits state i in
t steps. Then,

lim
t→∞

N(i , t)

t
= πi
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Random Walks on Graphs
A connected, non-bipartite, undirected graph G = (V ,E ) defines Markov
Chain MG with states V and transition matrix:

Puv =

{
1/d(u) if (u, v) ∈ E
0 otherwise

where |V | = n and |E | = m.

Lemma
MG is irreducible & aperiodic because it’s connected & non-bipartite.

Lemma (Stationary Distribution of MG )
For all v ∈ V , πv = d(v)/(2m).

Proof.
Let Γ(v) denote the graph neighborhood of v :∑

u,v

πuPu,v =
∑

u∈Γ(v)

d(u)

2m
· 1

d(u)
=

d(v)

2m
= πv
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Hitting Time
Definition
The hitting time huv is the expected time taken by a random walk
starting at node u until it arrives at v .

Theorem
For any edge (u, v) ∈ E, hvu < 2m.

Proof.

I By Fundamental Theorem: huu = π−1
u = 2m/d(u)

I But we can also write huu as

huu =
1

d(u)

∑
w∈Γ(u)

(1 + hwu)

I Hence,
2m =

∑
w∈Γ(u)

(1 + hwu) > hvu
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Cover Time (1/2)

Definition
Cu(G ) denote the expected time to visit every node after starting at u.
The cover time of G is C(G ) = maxu Cu(G ).

Theorem
C(G ) < 4mn where |V | = n and |E | = m.

Corollary
Expected time of at 2-SAT algorithm is O(n2).
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Cover Time (2/2)

Proof.

I Let T be a spanning tree of G and v0 ∈ V

I Let v0, v1, . . . , v2n−2 = v0 be the vertices visited in a traversal of T
that traverses each edge exactly twice.

I Then

Cv0 (G ) ≤
2n−3∑
j=0

hvj ,vj+1

I We know hvj ,vj+1 ≤ 2m because (u, v) is an edge

I Hence, Cv0 (G ) ≤ 2(n − 1)2m for all v0.
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