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Motivating Example

» An algorithm for 2-SAT:
1. Pick arbitrary assignment.
2. Pick an unsatisfied clause: randomly flip the value assigned to one of
the two variables.
3. Repeat Step 2 until there are no unsatisfied clauses.
Let x(t) be the assignment at time t.

Consider X(©) = n — A(x(!), y) for a fixed satisfying assignment y,
i.e., the number of variables that are set the same in both x(t) and y

X(+1) = x(t) + 1 and

p X+ = x4 1} >1/2

since either 1 or 2 of the variables in the clause we pick have a
different assignment that in y.

How long until we terminate?




Markov Chain

A Markov chain is a discrete-time stochastic process that defines a
sequence of random variables (Xp, X1, Xz, ...) and is defined by:

» State space: e.g., X; € {1,...,n}
» Transition probabilities: Pjj =P [X; = j|Xi—1 = i]
» Initial distribution for Xj.




Markov Chain

A Markov chain is a discrete-time stochastic process that defines a
sequence of random variables (Xp, X1, Xz, ...) and is defined by:

» State space: e.g., X; € {1,...,n}
» Transition probabilities: Pjj =P [X; = j|Xi—1 = i]
» Initial distribution for Xj.

Memoryless: X; only depends on X;_1:

]P[Xt = it‘Xt—l =lt_1,... 7X1 = ileO = fo] = IPJ[Xt = it|Xt—1 = "t—1]
= P

t—1/t




State Probability Vector and Stationary Distribution

Definition
Let qft) = P[X; = i]. The distribution of the chain at time t is the row

vector (q& ), qgt), ces Clr(f))~

Proof.
Follows since q =) q(t 2 Pi .
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State Probability Vector and Stationary Distribution

Definition
Let qft) = P[X; = i]. The distribution of the chain at time t is the row

vector (q§ ), qgt), ces qgt))

Lemma
q() = (O Pt where P be the matrix whose (i, j)-th entry is P;.

Proof.
Follows since q =) q(t 2 Pi .

Definition
A stationary distribution for a Markov chain with transition matrix P is a
probability distribution 7 such that ©# = 7 P.
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Underlying Graphs and Irreducible Markov Chains

Definition
The underlying graph of a Markov chain is a directed graph G = (V/, E)
where V = [n] and (i, j) € E iff P; > 0.

Definition

A Markov chain is irreducible if its underlying graph consists of a single
strong component. (Recall that a strong component of a directed graph
is a maximal subgraph C of G such that for any vertices i and j in C,
there is a directed path from i to j.)
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Transient States and Persistent States
Probability that ¢ is the first time that the chain visits state j if it starts

at state /:
i) =P[X;=jand X, #j forall 1 <s < t|Xp = i]

Probability that the chain ever visits state j if is starts at state /:
_ (1)
fi=>_1
t>0

Expected time to until a visit to state j if is starts at state i:

hij = Z tré-t) if fj =1 and hj; = oo otherwise
£>0

Definition

If f; < 1 then state i is transient. If f; = 1 then state i/ is persistent.
Those persitent states i for which h;; = oo are said to be null peristent
and those for which hj;; # oo are said to be non-null persistent.
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Periodicity and Ergodicity

Definition

The periodicity of state / is the maximum integer T for which there
exists an initial distribution ¢(©) and positive integer a such that for all ¢
we have: g\ > 0 implies t € {a+ Ti:i>0}. If T > 1 then state is
periodic and aperiodic otherwise. If every state is aperiodic then the
Markov chain is aperiodic.




Periodicity and Ergodicity

Definition

The periodicity of state / is the maximum integer T for which there
exists an initial distribution ¢(©) and positive integer a such that for all ¢
we have: g\ > 0 implies t € {a+ Ti:i>0}. If T > 1 then state is
periodic and aperiodic otherwise. If every state is aperiodic then the
Markov chain is aperiodic.

Definition

An ergodic state is one that is aperiodic and non-null persistent. A
Markov chain is ergodic if all states are ergodic.




Fundamental Theorem of Markov Chains

Theorem
Any irreducible, finite, and aperiodic Markov chain has the following
properties:

1. All states are ergodic.
. There is a unique stationary distribution = with m; > 0.

2
3. ﬂ,‘ =1 and h,',' = 1/7T;.
4

. Let N(i,t) be the number of times the Markov chain visits state i in

t steps. Then,
. N(iLt
lim (i,1) =7
t—00 t
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Chain Mg with states V' and transition matrix:
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Lemma
Mg is irreducible & aperiodic because it's connected & non-bipartite.
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Random Walks on Graphs

A connected, non-bipartite, undirected graph G = (V/, E) defines Markov
Chain Mg with states V' and transition matrix:

1/d(u) if (u,v) € E
P, = /
0 otherwise
where |V| = n and |E| = m.
Lemma
Mg is irreducible & aperiodic because it's connected & non-bipartite.

Lemma (Stationary Distribution of M)

ForallveV,n, =d(v)/(2m).

Proof.
Let ['(v) denote the graph neighborhood of v:

_ dlu) 1 d(v) _
;ﬂupu’v_ Z 2m .d( )_ 2m -

uel(v)
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Definition
The hitting time h,, is the expected time taken by a random walk
starting at node u until it arrives at v.
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Hitting Time

Definition
The hitting time h,, is the expected time taken by a random walk
starting at node u until it arrives at v.

Theorem
For any edge (u,v) € E, h,, <2m.

Proof.
» By Fundamental Theorem: h,, = 7, = 2m/d(u)

» But we can also write h,, as

1
huu:d(u) > (1 hu)

werl(u)

2m = Z (1+ hwu) > hvu
werl (u)
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Cover Time (1/2)

Definition
C.(G) denote the expected time to visit every node after starting at u.
The cover time of G is C(G) = max, C,(G).

Theorem
C(G) < 4mn where |V| = n and |E| = m.

Corollary
Expected time of at 2-SAT algorithm is O(n?).




Cover Time (2/2)

Proof.
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Cover Time (2/2)

Proof.

Let T be a spanning tree of G and vy € V

Let vo, vi,...,Von_2 = Vg be the vertices visited in a traversal of T
that traverses each edge exactly twice.

Then

E Vi Vit+1

Jj=0

We know h,, .., < 2m because (u, v) is an edge

i+l —




Cover Time (2/2)

Proof.

Let T be a spanning tree of G and vy € V
Let vo, vi,...,Von_2 = Vg be the vertices visited in a traversal of T
that traverses each edge exactly twice.

Then
2n—3

CVO(G) S Z th"/j+1
Jj=0

We know h,, .., < 2m because (u, v) is an edge
Hence, C,(G) < 2(n —1)2m for all v.
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