For a given graph property, e.g., bipartiteness, and graph G want to distinguish between the cases:

1. G has the property.
2. G is “ϵ-far” from having the property, i.e., need to change $\geq \epsilon n^2$ entries of adjacency matrix to get graph with the property.

For some problems, a more stringent definition of ϵ-far will be used.

Our focus will be on the number of queries we need to make to the graph where a query is of the form “is (u, v) an edge?”
Bipartiteness

For a given graph G, want to distinguish the cases:

1. There exists a partition of the nodes V_1, V_2 with no violating edges, i.e., edges with both end points in the same V_i
2. All partitions of the nodes have at least ϵn^2 violating edges.

Basic Idea:

- Sample $r = \epsilon^{-1} \ln(1/\delta)$ pairs of nodes $(u_1, v_1), (u_2, v_2), \ldots$.
- For a given partition with $\geq \epsilon n^2$ violating edges, the probability one of them is violating for this partition is at least:
 \[1 - (1 - \epsilon)^r \geq 1 - e^{-\epsilon r} = 1 - \delta \]

Can turn this into an algorithm:

- Given the r samples, try every node partition and if there exists a partition with no violating edge, accept and otherwise, reject.
- Probability of error is at most $2^n \delta$ so setting $\delta = 1/(4 \cdot 2^n)$ ensure error probability $1/4$ with $r = \epsilon^{-1}(n + 2) \ln 2$ samples.
A more efficient Bipartiteness tester

Let’s not try all partitions, but only a random set of partitions:

1. Let U be a random set of $\Theta(\epsilon^{-1} \log \epsilon^{-1})$ nodes.
 1.1 If U is not bipartite output “reject”

2. For each partition U_1, U_2 of U, consider induced partition of V

 \[W_1 = U_1 \cup \Gamma(U_2) \cup \{ v \in V \setminus U : v \notin \Gamma(U_1) \cup \Gamma(U_2) \} \]
 \[W_2 = U_2 \cup \Gamma(U_1) \]

2.1 If we observe $v \in \Gamma(U_1) \cap \Gamma(U_2)$, we can ignore (U_1, U_2).

Note that we don’t need to compute a partition explicitly: given U_1, U_2, we can determine whether $v \in W_1$ or $v \in W_2$ using $|U|$ queries.

Can show if G is bipartite there’s a partition defined above with $\leq \epsilon n^2/2$ violated edges. If not, all partitions have $\geq \epsilon n^2$ violated edges. Can distinguish with

\[
r = \Theta(\epsilon^{-1} \log \delta^{-1})
\]

queries via Chernoff analysis and now we only need $\delta = O(1/2|U|)$.

4/12
If G is bipartite, let (Y_1, Y_2) be a partition with no violating edges.

For sampled nodes U, consider partition:

\[U_1 = U \cap Y_1 \quad U_2 = U \cap Y_2 \]

and associated partition (W_1, W_2).

How different are (Y_1, Y_2) and (W_1, W_2)? Note that all nodes on wrong side must have had no neighbors in U.
If G is bipartite, there's a partition with few violations (2/2)

- Suppose there's A wrong-side nodes with degree $<$ $\epsilon n/4$ and B wrong-side with degree $\geq \epsilon n/4$.
- Number of violating edges in (W_1, W_2) is
 \[
 |A|\epsilon n/4 + |B|n \leq \epsilon n^2/4 + |B|n
 \]
- If $|B| \leq \epsilon n/4$, number of violating edges in (W_1, W_2) is $\leq \epsilon n^2/2$.
- Probability node with degree $\geq \epsilon n/4$ has no neighbors in U:
 \[
 (1 - (\epsilon n/4)/n)^{|U|} \leq \exp(-\epsilon/4 \cdot |U|) \leq \epsilon/12
 \]
- $\mathbb{E}[|B|] \leq \epsilon n/12$ and by Markov bound, with probability at least $2/3$, $|B| \leq \epsilon n/4$
Definition: H is a minor of a graph G if we can obtain H via a sequence of vertex removals, edge removals, or edge contractions. G is H-minor free if H is not a minor of G.

Wagner’s Thm: G is planar iff it is $K_{3,3}$ and K_5 minor free.

A graph property P is minor-closed if G having the property implies all minors of G also have the property. Can be shown every minor closed property is expressible as a constant number of excluded minors.

We’ll develop an algorithm running in $f(\epsilon, d)$ time that for any G and constant size H, distinguishes between the cases:

- G is H-minor-free.
- G is ϵ-far from being H-minor-free, i.e., more than ϵdn edges need removed where d is max degree of G.

(\(\epsilon, k\))-Hyperfinite

- \(G\) is \((\epsilon, k)\)-hyperfinite if it is possible to remove \(\leq \epsilon n\) edges such that the resulting connected components all have at most \(k\) nodes.

- **Theorem:** Given \(H\), there exists constant \(C_H\) such that \(\forall \epsilon \in (0, 1)\), every \(H\)-minor free graph of degree \(\leq d\) is \((\epsilon d, C_H^2/\epsilon^2)\)-hyperfinite.

- Using hyperfiniteness:
 - Partition \(G\) into a graph \(G'\) with constant size components by removing few edges. If we can’t do this, \(G\) is not \(H\)-minor free.
 - Test if \(G'\) has the property by picking random components and checking if they have the property.

- Initially assume we have a partition oracle:
 - **Input:** vertex \(v\).
 - **Output:** \(P[v]\), i.e., name of partition including \(v\).
 - **Properties of partition:**
 - 1) For \(v\), \(\{u : P[u] = P[v]\} \leq k\)
 - 2) if \(G\) is \(H\)-minor free
 \[
 |\{(u, v) \in E : P[u] \neq P[v]\}| \leq \epsilon dn/4
 \]
Algorithm assuming partition oracle

1. Part I: Does partition oracle only have a few crossing edges
 ▶ Compute estimate \hat{f} of $|\{(u, v) \in E : P[u] \neq P[v]\}|$. Estimate should be correct up to additive error $\epsilon dn/8$ with probability $\geq 9/10$
 ▶ If $\hat{f} > 3/8 \cdot \epsilon dn$ conclude G is not H-minor-free

2. Part II: Test random partitions
 ▶ Chose $S = O(1/\epsilon)$ random nodes and construct components corresponding to partitions including nodes in S.
 ▶ If all components explored are H-minor free and have size $\leq k = O(1/\epsilon^2)$, conclude G is close to H-minor-free.

Runtime analysis:
 ▶ Part I requires $O(1/\epsilon^2)$ calls to oracle.
 ▶ Part II requires $O(d/\epsilon^2)$ calls to oracle to construct each component and so $O(d/\epsilon^3)$ in total.
Correctness Analysis

- If G is H-minor free:
 - $|\{(u, v) \in E : P[u] \neq P[v]\}| \leq \epsilon dn/4$ implies
 \[
 \hat{f} \leq \epsilon dn/4 + \epsilon dn/8 = 3d\epsilon n/8
 \]
 with probability at least $9/10$. So we probably pass Part I.
 - For all $u \in V$, $P[u]$ is small and H minor free. So we pass Part II.

- If G is ϵ-far from H-minor free:
 - Case 1: If $|\{(u, v) \in E : P[u] \neq P[v]\}| > \epsilon dn/2$ then
 \[
 \hat{f} > \epsilon dn/2 - \epsilon dn/8 = 3d\epsilon n/8
 \]
 with probability at least $9/10$. So we'd probably reject at Part I.
 - Case 2: If $|\{(u, v) \in E : P[u] \neq P[v]\}| \leq \epsilon dn/2$.
 - We know G' is $\epsilon/2$-far from having the property.
 - The $\geq \epsilon dn/2$ edges needing removed are incident to $\geq \epsilon n/2$ nodes.
 - Sampling $O(1/\epsilon)$ nodes suffices to find component with an H minor.
How do we implement the partition oracle? A sketch.

Definition: S is an (δ, k)-isolated neighborhood of a node v if

1. $v \in S$
2. S is connected.
3. $|S| \leq k$
4. number of edges between S and \bar{S} is at most $\delta |S|$

At least $(1 - \epsilon/30)n$ nodes of a H-minor-free graph G have a (δ, k) isolated neighborhood for $\delta = d\epsilon/30$ and $k = \Theta(1/\epsilon^4)$

1. Since G is H-minor-free, it is possible to remove $r = 2\epsilon^2dn/900$ edges leaving connected components is size $\leq k = O(1/\epsilon^4)$.
2. Say a node is bad if its partition is not a (δ, k)-isolated neighborhood. Then number of bad nodes n_b satisfies:

$$\delta n_b \leq r/2 = \epsilon^2dn/900$$

and so $n_b \leq \epsilon/30 \cdot n$ as required.
Consider the (not sublinear time) greedy algorithm:

- Process nodes in random order and for each v explore locally to find a (δ, k) isolated neighborhood. If we find one, define this to be partition for v. If not, let partition of v just be $\{v\}$.
- By previous slide, expected number of singleton partitions is at most $\epsilon n/30$ and is less than $\epsilon n/10$ with probability at least $2/3$.
- Number of edges removed to define this partition is at most

$$\delta n + d \cdot (\#\text{singleton partitions}) \leq \epsilon d n/30 + d \epsilon n/10 \leq 2\epsilon d n/15$$

- Can emulate this greedy algorithm using similar ideas to those used to construct greedy matching.