CMPSCI 611: Advanced Algorithms
Lecture 20: More TSP and Knapsack PTAS

Andrew McGregor
Outline

Metric TSP $3/2$ approximate
Metric Traveling Salesperson Problem

Input: Weighted complete graph $G = (V, E)$ with positive weights such that for edges $e = (u, v), e' = (v, w)$, and $e'' = (u, w)$

$$w_e + w_{e'} \geq w_{e''}$$
Metric Traveling Salesperson Problem

- **Input:** Weighted complete graph $G = (V, E)$ with positive weights such that for edges $e = (u, v)$, $e' = (v, w)$, and $e'' = (u, w)$

\[w_e + w_{e'} \geq w_{e''} \]

- **Goal:** Find the tour (a path that visits every node exactly once and returns to starting point) of minimum total weight.
Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.
Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has even degree.
Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree T_{mst} of G
Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Let D be the nodes in T_{mst} that have odd degree
Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree \(T_{\text{mst}} \) of \(G \)
2. Let \(D \) be the nodes in \(T_{\text{mst}} \) that have odd degree
3. Find minimum cost perfect matching \(M \) on nodes of \(D \)

Theorem
The algorithm is a \(3/2 \)-approximation and runs in polynomial time. The result was first proved by Christofides in 1976. In 2020, Karlin, Klein, and Gharan designed and analyzed a \(3/2 - 10^{-36} \) approximation!
Metric TSP Approximation Algorithm

Algorithm

1. *Compute minimum spanning tree* T_{mst} *of* G
2. *Let* D *be the nodes in* T_{mst} *that have odd degree*
3. *Find minimum cost perfect matching* M *on nodes of* D
4. *Find Euler tour of* $T_{mst} + M$
Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Let D be the nodes in T_{mst} that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{\text{mst}} + M$
5. Transform into tour by short-cutting repeated vertices.

Theorem

The algorithm is a $3/2$-approximation and runs in polynomial time. The result was first proved by Christofides in 1976. In 2020, Karlin, Klein, and Gharan designed and analyzed a $3/2 - 10^{-36}$ approximation.
Metric TSP Approximation Algorithm

Algorithm
1. Compute minimum spanning tree T_{mst} of G
2. Let D be the nodes in T_{mst} that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{mst} + M$
5. Transform into tour by short-cutting repeated vertices.

Theorem
The algorithm is a $3/2$-approximation and runs in polynomial time.

The result was first proved by Christofides in 1976. In 2020, Karlin, Klein, and Gharan designed and analyzed a $3/2 - 10^{-36}$ approximation!
Analysis

Theorem

The algorithm is a $3/2$-approximation and runs in polynomial time.
Analysis

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.
Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

\[
\text{cost(tour found) } \leq \text{cost(Euler tour) } = \text{cost}(T_{mst}) + \text{cost}(M)
\]
Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

\[\text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost}(T_{mst}) + \text{cost}(M) \]

- As before, \(\text{cost}(T_{mst}) \leq \text{cost(} \text{optimal tour}) \)
Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

 \[\text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost}(T_{\text{mst}}) + \text{cost}(M) \]

- As before, \(\text{cost}(T_{\text{mst}}) \leq \text{cost(}\text{optimal tour}) \)

- Cost of \(M \) is at most half cost of optimal tour

 \[\text{cost}(M) \leq \frac{\text{cost(}\text{optimal tour})}{2} \]
Analysis

Theorem
The algorithm is a $3/2$-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour
 \[
 \text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost}(T_{\text{mst}}) + \text{cost}(M)
 \]

- As before, \(\text{cost}(T_{\text{mst}}) \leq \text{cost(optimal tour)} \)

- Cost of \(M \) is at most half cost of optimal tour
 \[
 \text{cost}(M) \leq \frac{1}{2} \text{cost(optimal tour)}
 \]

Let \(D = \{d_1, \ldots, d_k\} \) be ordered according to optimal tour.

\[
\text{cost(optimal tour)} \geq w_{d_1, d_2} + w_{d_2, d_3} + \ldots + w_{d_k, d_1}
= (w_{d_1, d_2} + w_{d_3, d_4} + \ldots w_{d_{k-1}, d_k}) +
 (w_{d_2, d_3} + w_{d_4, d_5} + \ldots w_{d_k, d_1})
\]
PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered 1, 2, . . . , n, where each the i-th item has weight \(w_i \) and value \(v_i \). \(C \) is the capacity of your knapsack. (Assume each \(w_i \leq C \).)

2. Goal: Find a subset \(B \) of the items with maximum total value subject to \(\sum_{i \in B} w_i \leq C \).
Dynamic Programming Approach

- Let $v_{knap}(i, v)$ be the minimum weight required to achieve a value of at least v using items 1, ..., i.

 \[
 \begin{align*}
 v_{knap}(1, v) &= \begin{cases}
 w_1 & \text{for } v \leq v_1 \\
 \infty & \text{for } v > v_1
 \end{cases} \\
 v_{knap}(i+1, v) &= \min\{v_{knap}(i, v), v_{knap}(i, v-v_i+1) + w_{i+1}\}
 \end{align*}
 \]

 where $v_{knap}(i, u) = 0$ if $u < 0$.

 Let $V = \max_i(v_i)$ and note that the maximum value obtainable is $\leq V \cdot n$.

 Dynamic programming solution has $O(n^2 V)$ complexity.
Dynamic Programming Approach

- Let $vknap(i, v)$ be the minimum weight required to achieve a value of at least v using items 1, ..., i.

- Then

\[
vknap(1, v) = \begin{cases}
 w_1 & \text{for } v \leq v_1 \\
 \infty & \text{for } v > v_1
\end{cases}
\]

and

\[
vknap(i + 1, v) = \min\{vknap(i, v), vknap(i, v - v_{i+1}) + w_{i+1}\}
\]

where $vknap(i, u) = 0$ if $u < 0$.
Dynamic Programming Approach

Let $v_{knap}(i, v)$ be the minimum weight required to achieve a value of at least v using items $1, \ldots, i$.

Then

$$v_{knap}(1, v) = \begin{cases} w_1 & \text{for } v \leq v_1 \\ \infty & \text{for } v > v_1 \end{cases}$$

and

$$v_{knap}(i + 1, v) = \min\{v_{knap}(i, v), v_{knap}(i, v - v_{i+1}) + w_{i+1}\}$$

where $v_{knap}(i, u) = 0$ if $u < 0$.

Let $V = \max_i(v_i)$ and note that max value obtainable is $\leq Vn$.
Dynamic Programming Approach

Let \(vknap(i, v) \) be the minimum weight required to achieve a value of at least \(v \) using items \(1, \ldots, i \).

Then

\[
vknap(1, v) = \begin{cases}
w_1 & \text{for } v \leq v_1 \\
\infty & \text{for } v > v_1
\end{cases}
\]

and

\[
vknap(i + 1, v) = \min\{vknap(i, v), vknap(i, v - v_{i+1}) + w_{i+1}\}
\]

where \(vknap(i, u) = 0 \) if \(u < 0 \).

Let \(V = \max_i(v_i) \) and note that max value obtainable is \(\leq Vn \).

Dynamic programming solution has \(O(n^2V) \) complexity
Approximation Algorithm

1. **New values:** Define v_i' by setting k lowest order bits of v_i to zero.

Lemma

If B' be set returned and let B be the optimal set:

$$\sum_{i \in B} v_i \sum_{i \in B'} v_i' \leq 1 + \frac{n^2}{2^k V} - \frac{n^2}{2^k}$$

Proof.

1. Since B' is optimal for new values:

$$\sum_{i \in B'} v_i \geq \sum_{i \in B'} v_i' \geq \sum_{i \in B} (v_i - 2^k) \geq \left(\sum_{i \in B} v_i\right) - 2^k n$$

2. Therefore

$$\sum_{i \in B} v_i \sum_{i \in B'} v_i' \leq \sum_{i \in B} v_i \left(\sum_{i \in B} v_i\right) - 2^k n = 1 + \frac{n^2}{2^k V} - \frac{n^2}{2^k}$$
Approximation Algorithm

1. **New values:** Define v'_i by setting k lowest order bits of v_i to zero.
2. Run dynamic programming solution with the new values

Lemma

If B' be set returned and let B be the optimal set:

$$\sum_{i \in B} \frac{v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V-n2^k}$$
Approximation Algorithm

1. New values: Define v'_i by setting k lowest order bits of v_i to zero.
2. Run dynamic programming solution with the new values

Lemma

If B' be set returned and let B be the optimal set:

$$\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V-n2^k}$$

Proof.

1. Since B' is optimal for new values:

$$\sum_{i \in B'} v_i \leq \sum_{i \in B'} v'_i$$
Approximation Algorithm

1. New values: Define v'_i by setting k lowest order bits of v_i to zero.
2. Run dynamic programming solution with the new values

Lemma

If B' be set returned and let B be the optimal set: \[\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V - n2^k} \]

Proof.

1. Since B' is optimal for new values:

\[\sum_{i \in B'} v_i \geq \sum_{i \in B'} v'_i \geq \sum_{i \in B} v'_i \]
Approximation Algorithm

1. New values: Define v'_i by setting k lowest order bits of v_i to zero.
2. Run dynamic programming solution with the new values

Lemma

If B' be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V-n2^k}$

Proof.

1. Since B' is optimal for new values:

$$\sum_{i \in B'} v_i \geq \sum_{i \in B'} v'_i \geq \sum_{i \in B} v'_i \geq \sum_{i \in B} (v_i - 2^k) \geq \left(\sum_{i \in B} v_i\right) - 2^k n$$
Approximation Algorithm

1. **New values:** Define v'_i by setting k lowest order bits of v_i to zero.
2. Run dynamic programming solution with the new values

Lemma

If B' be set returned and let B be the optimal set: \[rac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V - n2^k}\]

Proof.

1. Since B' is optimal for new values:

\[
\sum_{i \in B'} v_i \geq \sum_{i \in B'} v'_i \geq \sum_{i \in B} v'_i \geq \sum_{i \in B} (v_i - 2^k) \geq \left(\sum_{i \in B} v_i\right) - 2^k n
\]

2. Therefore

\[
\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq \frac{\sum_{i \in B} v_i}{\left(\sum_{i \in B} v_i\right) - 2^k n}
\]
Approximation Algorithm

1. New values: Define \(v_i' \) by setting \(k \) lowest order bits of \(v_i \) to zero.
2. Run dynamic programming solution with the new values

Lemma

If \(B' \) be set returned and let \(B \) be the optimal set: \[
\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V - n2^k}
\]

Proof.

1. Since \(B' \) is optimal for new values:

\[
\sum_{i \in B'} v_i \geq \sum_{i \in B'} v_i' \geq \sum_{i \in B} v_i' \geq \sum_{i \in B} (v_i - 2^k) \geq \left(\sum_{i \in B} v_i \right) - 2^k n
\]

2. Therefore

\[
\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq \frac{\sum_{i \in B} v_i}{(\sum_{i \in B} v_i) - 2^k n} = 1 + \frac{2^k n}{(\sum_{i \in B} v_i) - 2^k n}
\]

10/13
Approximation Algorithm

1. **New values**: Define v'_i by setting k lowest order bits of v_i to zero.
2. Run dynamic programming solution with the new values

Lemma

If B' be set returned and let B be the optimal set:

$$\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq 1 + \frac{n2^k}{V - n2^k}$$

Proof.

1. Since B' is optimal for new values:

$$\sum_{i \in B'} v_i \geq \sum_{i \in B'} v'_i \geq \sum_{i \in B} v'_i \geq \sum_{i \in B} (v_i - 2^k) \geq \left(\sum_{i \in B} v_i\right) - 2^k n$$

2. Therefore

$$\frac{\sum_{i \in B} v_i}{\sum_{i \in B'} v_i} \leq \frac{\sum_{i \in B} v_i}{(\sum_{i \in B} v_i) - 2^k n} = 1 + \frac{2^k n}{(\sum_{i \in B} v_i) - 2^k n} \leq 1 + \frac{2^k n}{V - 2^k n}$$
Finishing off Analysis

Claim

If \(k \leq \log(\epsilon V/(2n)) \) and \(\epsilon \leq 1 \) then \(1 + \frac{2^k n}{V - 2^k n} \leq 1 + \epsilon \).
Finishing off Analysis

Claim

If $k \leq \log(\epsilon V/(2n))$ and $\epsilon \leq 1$ then $1 + \frac{2^kn}{V-2^kn} \leq 1 + \epsilon$.

1. Let $k = \lfloor \log(\epsilon V/(2n)) \rfloor$
Finishing off Analysis

Claim
If \(k \leq \log(\epsilon V/(2n)) \) and \(\epsilon \leq 1 \) then
\[
1 + \frac{2^k n}{\sqrt{V-2^k n}} \leq 1 + \epsilon.
\]

1. Let \(k = \lfloor \log(\epsilon V/(2n)) \rfloor \)
2. Solve for \(v' \) by solving for another set of values \(v'' \) where

\[
v''_i = v'_i / 2^k
\]
Finishing off Analysis

Claim
If $k \leq \log(\epsilon V/(2n))$ and $\epsilon \leq 1$ then $1 + \frac{2^k n}{V - 2^k n} \leq 1 + \epsilon$.

1. Let $k = \lfloor \log(\epsilon V/(2n)) \rfloor$
2. Solve for v' by solving for another set of values v'' where

 $v''_i = v'_i / 2^k$

3. The maximum value for v'' satisfies:

 $\max v''_i \leq V / 2^k \leq 2V / (\epsilon V/(2n)) = 4n/\epsilon$

 so the run time is $O(n^3/\epsilon)$
Summary of Approximation Algorithms

- **Algorithms:**
 - 2-approximation for vertex cover
 - 2-approximation for max-cut
 - $3/2$-approximation for metric traveling salesman
 - $O(\log n)$-approximation for weighted set-cover
 - FPTAS for knapsack
Summary of Approximation Algorithms

- Algorithms:
 - 2-approximation for vertex cover
 - 2-approximation for max-cut
 - $3/2$-approximation for metric traveling salesman
 - $O(\log n)$-approximation for weighted set-cover
 - FPTAS for knapsack

- A poly-time reduction may not be “approximation preserving”
Summary of Approximation Algorithms

- **Algorithms:**
 - 2-approximation for vertex cover
 - 2-approximation for max-cut
 - 3/2-approximation for metric traveling salesman
 - \(O(\log n) \)-approximation for weighted set-cover
 - FPTAS for knapsack

- A poly-time reduction may not be “approximation preserving”
- For a reference of what approximation factors are known check out:
 - http://www.csc.kth.se/~viggo/wwwcompendium/
Alternative Approaches to NP-hard problems

- Restrict the input:
 - Assuming input graph is acyclic, of bounded degree, or planar
 - Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: *Average case analysis*
- Assume all integers in the input are polynomial in the input size...
Alternative Approaches to NP-hard problems

- Restrict the input:
 - Assuming input graph is acyclic, of bounded degree, or planar
 - Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: *Average case analysis*
- Assume all integers in the input are polynomial in the input size...

Definition
An algorithm runs in *pseudo-polynomial time* if the running time is polynomial in the input size and any integer in the input.
Alternative Approaches to NP-hard problems

- Restrict the input:
 - Assuming input graph is acyclic, of bounded degree, or planar
 - Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: *Average case analysis*
- Assume all integers in the input are polynomial in the input size...

Definition
An algorithm runs in *pseudo-polynomial time* if the running time is polynomial in the input size and any integer in the input.

Definition
A problem is *strongly NP-complete* if it remains NP-complete even when all integers in an input of length n are polynomial in n