Problem: Sort an array of distinct values \(X = [x_1, \ldots, x_n] \)
From Last Time: Quicksort

Problem: Sort an array of distinct values $X = [x_1, \ldots, x_n]$

Algorithm

1. Pick a pivot $x \in X$ at random from the array
2. Construct new arrays $Y = [y_1, \ldots, y_k]$, $Z = [z_1, \ldots, z_{n-k-1}]$ where $y < x < z$ for all $y \in Y, z \in Z$
3. Recursively sort Y and Z to get Y' and Z'
4. Return the array that concatenates Y', x, and Z'

What's the expected number of comparisons performed in this algorithm? $\frac{2}{9}$
From Last Time: Quicksort

Problem: Sort an array of distinct values $X = [x_1, \ldots, x_n]$

Algorithm

1. Pick a pivot $x \in X$ at random from the array
2. Construct new arrays $Y = [y_1, \ldots, y_k]$, $Z = [z_1, \ldots, z_{n-k-1}]$ where $y < x < z$ for all $y \in Y$, $z \in Z$
3. Recursively sort Y and Z to get Y' and Z'
4. Return the array that concatenates Y', x, and Z'

What’s the expected number of comparisons performed in this algorithm?
Probability two items are compared

Lemma
Let \(a\) and \(b\) be the \(i\)-th and \(j\)-th smallest element of \(X\) where \(i < j\).

\[
\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}
\]
Lemma
Let \(a\) and \(b\) be the \(i\)-th and \(j\)-th smallest element of \(X\) where \(i < j\).

\[
\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}
\]

Proof.
Probability two items are compared

Lemma
Let a and b be the i-th and j-th smallest element of X where $i < j$.

$$\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}$$

Proof.
1. Consider $S = \{x \in X : a \leq x \leq b\}$
Probability two items are compared

Lemma
Let a and b be the i-th and j-th smallest element of X where $i < j$.

$$\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}$$

Proof.
1. Consider $S = \{x \in X : a \leq x \leq b\}$
2. a and b are compared iff the first pivot chosen from S is either a or b
Probability two items are compared

Lemma
Let a and b be the i-th and j-th smallest element of X where $i < j$.

$$\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}$$

Proof.
1. Consider $S = \{x \in X : a \leq x \leq b\}$
2. a and b are compared iff the first pivot chosen from S is either a or b
3. Elements of S are equally likely to be chosen as a pivot, so

$$\Pr[a \text{ is compared to } b] = \frac{2}{|S|}$$
Probability two items are compared

Lemma
Let \(a \) and \(b \) be the \(i \)-th and \(j \)-th smallest element of \(X \) where \(i < j \).

\[
Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}
\]

Proof.
1. Consider \(S = \{x \in X : a \leq x \leq b\} \)
2. \(a \) and \(b \) are compared iff the first pivot chosen from \(S \) is either \(a \) or \(b \)
3. Elements of \(S \) are equally likely to be chosen as a pivot, so

\[
Pr[a \text{ is compared to } b] = \frac{2}{|S|} = \frac{2}{j - i + 1}
\]
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.

2. Number of comparisons:

\[
\sum_{1 \leq i < j \leq n} Z_{ij}
\]

3. Expected number of comparisons:

\[
E\left[\sum_{1 \leq i < j \leq n} Z_{ij} \right]
\]

\[
= \sum_{1 \leq i < j \leq n} E[Z_{ij}]
\]

\[
= \sum_{1 \leq i < j \leq n} 2^{j-i} + 1
\]

\[
= \sum_{j=2}^{n} \sum_{k=2}^{j} 2^{k-1}
\]

\[
= n \cdot O(\log n)
\]

Because

\[
H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = O(\log n),
\]

\[
E\left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] \leq n \sum_{j=2}^{n} \sum_{k=2}^{j} 2^{k-1}
\]

\[
= n \cdot O(\log n) = O(n \log n)
\]
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i < j \leq n} Z_{ij}$
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i < j \leq n} Z_{ij}$
3. Expected number of comparisons:

$$
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right]
$$
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.

2. Number of comparisons: $\sum_{1 \leq i < j \leq n} Z_{ij}$

3. Expected number of comparisons:

$$
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = \sum_{1 \leq i < j \leq n} \mathbb{E} [Z_{ij}]
$$
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is \(O(n \log n)\).

Proof.

1. Let \(Z_{ij} = 1\) if the \(i\)-th smallest element is compared to \(j\)-th smallest element and \(Z_{ij} = 0\) otherwise.
2. Number of comparisons: \(\sum_{1 \leq i < j \leq n} Z_{ij}\)
3. Expected number of comparisons:

\[
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = \sum_{1 \leq i < j \leq n} \mathbb{E}[Z_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = \sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
\]
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i < j \leq n} Z_{ij}$
3. Expected number of comparisons:

$$
E \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = \sum_{1 \leq i < j \leq n} E[Z_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = \sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
$$

4. Because $H_n = 1 + 1/2 + 1/3 + \ldots + 1/n = O(\log n)$,

$$
E \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] \leq \sum_{j=2}^{n} \sum_{k=2}^{n} \frac{2}{k} = n \cdot O(\log n) = O(n \log n)
$$
Outline

Karger’s Randomized Min-Cut Algorithm
Min-Cut Problem

Given an unweighted, multi-graph $G = (V, E)$, we want to partition V into V_1 and V_2 such that $|E \cap (V_1 \times V_2)|$ is minimized.
Min-Cut Problem

Given an unweighted, multi-graph \(G = (V, E) \), we want to partition \(V \) into \(V_1 \) and \(V_2 \) such that \(|E \cap (V_1 \times V_2)| \) is minimized.

Algorithm

- **Contract** a random edge \(e = (u, v) \) and remove self-loops but not multi-edges
- **Repeat** until there are only 2 vertices remaining.
- **Output** the number of remaining edges.
Min-Cut Problem

Given an unweighted, multi-graph $G = (V, E)$, we want to partition V into V_1 and V_2 such that $|E \cap (V_1 \times V_2)|$ is minimized.

Algorithm

- **Contract** a random edge $e = (u, v)$ and remove self-loops but not multi-edges
- Repeat until there are only 2 vertices remaining.
- Output the number of remaining edges.

Let $|V| = n$ and $|E| = m$.
Example

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6
Correctness with low probability

Theorem

Algorithm is correct with probability \(\geq \frac{2}{n^2} \) and never underestimates.
Correctness with low probability

Theorem
Al\textit{gorithm is correct with probability }\geq 2/n^2 \textit{ and never underestimates.}

Proof.

\begin{itemize}
\item Min cut of the graph doesn't decrease: after \(e = (x, y) \) contracted, set of possible cuts is limited to all those with \(x \) and \(y \) on same side
\end{itemize}
Correctness with low probability

Theorem

Algorithm is correct with probability $\geq 2/n^2$ and never underestimates.

Proof.

- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
Correctness with low probability

Theorem

Algorithm is correct with probability $\geq \frac{2}{n^2}$ and never underestimates.

Proof.

- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
- Let A_i be event that we don’t contract edge across C at step i.

\[
P[\cap_{1 \leq i \leq n-2} A_i] = P[A_1] P[A_2|A_1] \cdots P[A_{n-2}| \cap_{1 \leq i \leq n-3} A_i]
\]
Correctness with low probability

Theorem

Algorithm is correct with probability $\geq \frac{2}{n^2}$ and never underestimates.

Proof.

- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
- Let A_i be event that we don’t contract edge across C at step i.

$$\Pr[\cap_{1 \leq i \leq n-2} A_i] = \Pr[A_1] \Pr[A_2 | A_1] \ldots \Pr[A_{n-2} | \cap_{1 \leq i \leq n-3} A_i]$$

- Number of edges before i-th step if no edges across C have been contracted so far is at least
Correctness with low probability

Theorem
Algorithm is correct with probability $\geq \frac{2}{n^2}$ and never underestimates.

Proof.
- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side.
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
- Let A_i be event that we don’t contract edge across C at step i.

\[
P[\cap_{1 \leq i \leq n-2} A_i] = P[A_1] P[A_2 | A_1] \cdots P[A_{n-2} | \cap_{1 \leq i \leq n-3} A_i]
\]

- Number of edges before i-th step if no edges across C have been contracted so far is at least $(n - i + 1)k/2$ since there are $n - i + 1$ nodes remaining each with degree $\geq k$.
Correctness with low probability

Theorem

Algorithm is correct with probability $\geq \frac{2}{n^2}$ and never underestimates.

Proof.

- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side.
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
- Let A_i be event that we don’t contract edge across C at step i.

$$
P[\cap_{1 \leq i \leq n-2} A_i] = P[A_1] P[A_2|A_1] \ldots P[A_{n-2}|\cap_{1 \leq i \leq n-3} A_i]
$$

- Number of edges before i-th step if no edges across C have been contracted so far is at least $(n - i + 1)k/2$ since there are $n - i + 1$ nodes remaining each with degree $\geq k$.
- $P[A_i|A_1 \cap A_2 \cap \ldots \cap A_{i-1}] \geq 1 - 2/(n - i + 1)$
Correctness with low probability

Theorem
Algorithm is correct with probability $\geq \frac{2}{n^2}$ and never underestimates.

Proof.

- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side.
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
- Let A_i be event that we don’t contract edge across C at step i.

$$P[\bigcap_{1 \leq i \leq n-2} A_i] = P[A_1] P[A_2|A_1] \cdots P[A_{n-2}|\bigcap_{1 \leq i \leq n-3} A_i]$$

- Number of edges before i-th step if no edges across C have been contracted so far is at least $(n - i + 1)k/2$ since there are $n - i + 1$ nodes remaining each with degree $\geq k$.
- $P[A_i|A_1 \cap A_2 \cap \ldots \cap A_{i-1}] \geq 1 - 2/(n - i + 1)$ and so

$$P[\bigcap_{1 \leq i \leq n-2} A_i] \geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{3}\right)$$
Correctness with low probability

Theorem

Algorithm is correct with probability $\geq 2/n^2$ and never underestimates.

Proof.

- Min cut of the graph doesn’t decrease: after $e = (x, y)$ contracted, set of possible cuts is limited to all those with x and y on same side
- Let $C = (V_1, V_2)$ be a specific minimum cut with $|C| = k$.
- Let A_i be event that we don’t contract edge across C at step i.

$$
\mathbb{P}[\bigcap_{1 \leq i \leq n-2} A_i] = \mathbb{P}[A_1] \mathbb{P}[A_2|A_1] \ldots \mathbb{P}[A_{n-2} | \bigcap_{1 \leq i \leq n-3} A_i]
$$

- Number of edges before i-th step if no edges across C have been contracted so far is at least $(n - i + 1)k/2$ since there are $n - i + 1$ nodes remaining each with degree $\geq k$
- $\mathbb{P}[A_i | A_1 \cap A_2 \cap \ldots \cap A_{i-1}] \geq 1 - 2/(n - i + 1)$ and so

$$
\mathbb{P}[\bigcap_{1 \leq i \leq n-2} A_i] \geq \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right) \ldots \left(1 - \frac{2}{3}\right)
$$

$$
= \frac{n-2}{n} \cdot \frac{n-3}{8n-1} \cdot \frac{n-4}{n-2} \cdot \ldots \cdot \frac{1}{3} = \frac{2}{n(n-1)}
$$
Min-Cut Problem: Boosting the probability

Theorem
Repeating $\alpha n^2/2$ times (with new random coin flips) and returning smallest cut is correct with probability at least $1 - e^{-\alpha}$.

Proof. Because each repeat is independent, $P[\text{always fails}] = \prod_{1 \leq i \leq \alpha} P[i\text{-th try fails}]
\leq (1 - 2/n^2)^{\alpha n^2/2}$

Use fact $1 - x \leq e^{-x}$ for $x \geq 0$ and simplify.
Min-Cut Problem: Boosting the probability

Theorem

Repeating $\alpha n^2/2$ times (with new random coin flips) and returning smallest cut is correct with probability at least $1 - e^{-\alpha}$.

Proof.

- Because each repeat is independent,

 \[P [\text{always fails}] = \prod_{1 \leq i \leq \alpha n^2 / 2} P [i\text{-th try fails}] \leq (1 - 2/n^2)^{\alpha n^2 / 2} \]

- Use fact $1 - x \leq e^{-x}$ for $x \geq 0$ and simplify.

\[\square \]