Definitions

Input:
- Directed Graph $G = (V, E)$
- Capacities $C(u, v) > 0$ for $(u, v) \in E$ and $C(u, v) = 0$ for $(u, v) \notin E$
- A source node s, and sink node t
Capacity

\[
\begin{align*}
v_1 & \rightarrow v_2 & 12 \\
v_3 & \rightarrow v_2 & 20 \\
s & \rightarrow v_1 & 16 \\
v_3 & \rightarrow s & 13 \\
v_3 & \rightarrow v_4 & 14 \\
v_4 & \rightarrow t & 4 \\
v_2 & \rightarrow t & 7 \\
v_1 & \rightarrow v_3 & 4 \\
v_2 & \rightarrow v_3 & 9 \\
v_1 & \rightarrow v_4 & 10 \\
v_4 & \rightarrow v_1 & 12 \\
\end{align*}
\]
Definitions

Input:

- Directed Graph $G = (V, E)$
- Capacities $C(u, v) > 0$ for $(u, v) \in E$ and $C(u, v) = 0$ for $(u, v) \notin E$
- A source node s, and sink node t

Output: A flow f from s to t where $f : V \times V \to \mathbb{R}$ satisfies

- Skew-symmetry: $\forall u, v \in V, f(u, v) = -f(v, u)$
- Conservation of Flow: $\forall v \in V - \{s, t\}, \sum_{u \in V} f(u, v) = 0$
- Capacity Constraints: $\forall u, v \in V, f(u, v) \leq C(u, v)$

Goal: Maximize "size of the flow", i.e., the total flow coming leaving s:

$$|f| = \sum_{v \in V} f(s, v)$$
Capacity

The diagram shows a network with nodes labeled as s, v_1, v_2, v_3, and t. The edges are labeled with capacities.

- The edge from s to v_1 has a capacity of 16.
- The edge from v_1 to v_2 has a capacity of 12.
- The edge from v_2 to t has a capacity of 20.
- The edge from s to v_3 has a capacity of 13.
- The edge from v_3 to v_1 has a capacity of 10.
- The edge from v_3 to v_4 has a capacity of 14.
- The edge from v_4 to v_2 has a capacity of 9.
- The edge from v_4 to t has a capacity of 7.

The capacities of the edges are indicated in the diagram.
Capacity/Flow

Graph with nodes labeled as follows:

- Source: s
- Intermediate nodes: v_1, v_3, and v_4
- Sink: t

Edges and their capacities:

- s to v_1: $16/11$
- v_1 to v_2: $12/12$
- v_1 to v_3: $10/0$
- v_3 to v_2: $9/4$
- v_2 to v_4: $20/15$
- v_2 to t: $7/7$
- v_3 to t: $4/4$
- v_3 to v_4: $14/11$

The flow through the network is balanced, as indicated by the capacities and flows on each edge.
Cut Definitions

Definition
An \(s - t \) cut of \(G \) is a partition of the vertices into two sets \(A \) and \(B \) such that \(s \in A \) and \(t \in B \).

Definition
The capacity of a cut \((A, B)\) is

\[
C(A, B) = \sum_{u \in A, v \in B} C(u, v)
\]

Definition
The flow across a cut \((A, B)\) is

\[
f(A, B) = \sum_{u \in A, v \in B} f(u, v)
\]

Note that because of capacity constraints: \(f(A, B) \leq C(A, B) \)
First Cut

\begin{center}
\begin{tikzpicture}
 \node[shape=circle,draw=black] (s) at (0,0) {s};
 \node[shape=circle,draw=black] (v1) at (2,2) {v_1};
 \node[shape=circle,draw=black] (v2) at (4,4) {v_2};
 \node[shape=circle,draw=black] (v3) at (2,-2) {v_3};
 \node[shape=circle,draw=black] (v4) at (4,-4) {v_4};
 \node[shape=circle,draw=black] (t) at (6,0) {t};

 \path (s) edge node [above] {$16/11$} (v1);
 \path (s) edge node [below] {$13/8$} (v3);
 \path (v1) edge node [above] {$10/0$} (v3);
 \path (v1) edge node [above] {$4/1$} (v4);
 \path (v2) edge node [above] {$12/12$} (v1);
 \path (v2) edge node [below] {$20/15$} (t);
 \path (v3) edge node [below] {$7/7$} (v4);
 \path (v4) edge node [below] {$4/4$} (t);
\end{tikzpicture}
\end{center}
Second Cut
Lemma

For any flow \(f \): for all \(s-t \) cuts \((A, B)\), \(f(A, B) \) equals \(|f|\).

Proof.

- By induction on size of \(A \) where \(s \in A \)
- **Base Case:** \(A = \{s\} \) and \(f(s, V - s) = |f| \)
- **Induction Hypothesis:** \(f(A, B) = |f| \) for all \(A \) such that \(|A| = k\)
- Consider cut \((A', B')\) where \(|A'| = k + 1\). Let \(u \in A' - s:\)

\[
f(A', B') = f(A' - u, B' + u) - \sum_{v \in A'} f(v, u) + \sum_{v \in B'} f(u, v)
\]

- By skew-symmetry and conservation of flow

\[
\sum_{v \in A'} f(v, u) - \sum_{v \in B'} f(u, v) = \sum_{v \in A'} f(v, u) + \sum_{v \in B'} f(v, u) = \sum_{v \in V} f(v, u) = 0
\]

- Hence, \(f(A', B') = f(A' - u, B' + u) = |f| \) by induction hypothesis.
Theorem (Max-Flow Min-Cut)

For any flow network and flow f, the following statements are equivalent:

1. f is a maximum flow.
2. There exists an $s-t$ cut (A, B) such that $|f| = C(A, B)$
Residual Networks and Augmenting Paths

Residual network encodes how you can change the flow between two nodes given the current flow and the capacity constraints.

Definition

Given a flow network $G = (V, E)$ and flow f in G, the residual network G_f is defined as

$$G_f = (V, E_f) \text{ where } E_f = \{(u, v) : C(u, v) - f(u, v) > 0\}$$

$$C_f(u, v) = C(u, v) - f(u, v)$$

Note that $(u, v) \in E_f$ implies either $C(u, v) > 0$ or $C(v, u) > 0$.

Definition

An augmenting path for flow f is a path from s to t in graph G_f. The bottleneck capacity $b(p)$ is the minimum capacity in G_f of any edge of p. We can increase flow by $b(p)$ along an augmenting path.
Capacity/Flow
Residual
Augmenting Path
Old Flow

\begin{figure}
\centering
\begin{tikzpicture}
 \node (s) at (0,0) {s};
 \node (v1) at (2,2) {v_1};
 \node (v2) at (4,2) {v_2};
 \node (v3) at (2,-2) {v_3};
 \node (v4) at (4,-2) {v_4};
 \node (t) at (6,0) {t};

 \draw[->] (s) -- (v1) node [midway, above] {$16/11$};
 \draw[->] (v1) -- (v2) node [midway, above] {$12/12$};
 \draw[->] (v2) -- (t) node [midway, above] {$20/15$};
 \draw[->] (s) -- (v3) node [midway, above] {$10/0$};
 \draw[->] (v3) -- (v4) node [midway, above] {$14/11$};
 \draw[->] (v4) -- (t) node [midway, above] {$4/4$};
 \draw[<->] (s) -- (v3) node [midway, above] {$13/8$};
 \draw[<->] (v1) -- (v3) node [midway, above] {$4/1$};
 \draw[<->] (v2) -- (v4) node [midway, above] {$7/7$};
 \draw[<->] (v1) -- (v4) node [midway, above] {$9/4$};
\end{tikzpicture}
\end{figure}
New Flow
Min Capacity Cut Proves this is Optimal
Old Residual Graph
New Residual Graph
Max-Flow Min-Cut

Theorem (Max-Flow Min-Cut)

For any flow network and flow f, the following statements are equivalent:

1. f is a maximum flow.
2. There exists an $s - t$ cut (A, B) with $|f| = f(A, B) = C(A, B)$.
3. There doesn’t exist an augmenting path in G_f.

Proof.

- $(2 \Rightarrow 1)$: Increasing flow, increases $f(A, B)$ which violates capacity
- $(1 \Rightarrow 3)$: If p is an augmenting path, can increase flow by $b(p)$
- $(3 \Rightarrow 2)$: Suppose G_f has no augmenting path. Define cut

$$A = \{ v : v \text{ is reachable from } s \text{ in } G_f \} \text{ and } B = V - A$$

$$\forall u \in A, v \in B, f(u, v) = C(u, v). \text{ Hence } C(A, B) = f(A, B) = |f|$$
Ford-Fulkerson Algorithm

Algorithm
1. \(\text{flow } f = 0 \)
2. while there exists an augmenting path \(p \) for \(f \)
 2.1 find augmenting path \(p \)
 2.2 augment \(f \) by \(b(p) \) units along \(p \)
3. return \(f \)

Theorem
The algorithm finds a maximum flow in time \(O(|E| f^*|) \) if capacities are integral where \(|f^*| \) is the size of the maximum flow.

Proof.
\(O(|E|) \) time to find each augmenting path via BFS and \(|f^*| \) iterations because each augmenting path increases flow by at least 1.
Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. \(flow \ f = 0 \)
2. while there exists an augmenting path \(p \) for \(f \)
 2.1 find shortest (unweighted) augmenting path \(p \)
 2.2 augment \(f \) by \(b(p) \) units along \(p \)
3. return \(f \)

Theorem

The algorithms finds a maximum flow in time \(O(|E|^2|V|) \)
Proof of Running Time (1/3)

Definition
Let $\delta_f(s, u)$ be length of shortest unweighted path from s to u in the G_f.

Definition
(u, v) is critical if it’s on augmenting path p for f and $C_f(u, v) = b(p)$.

Lemma
$\delta_f(s, v)$ is non-decreasing as f changes.

Lemma
Between occasions when (u, v) is critical, $\delta_f(s, u)$ increases by at least 2.

Proof of Running Time.

- Max distance in G_f is $|V|$ so any edge is critical at most $|V|/2$ times
- At most $2|E|$ edges in residual network
- There’s a critical edge in each iteration so $O(|E||V|)$ iterations
- Each iteration takes $O(|E|)$ to find shortest path
Proof of Running Time (2/3)

Lemma
\(\delta_f(s, v) \) is non-decreasing as \(f \) changes.

Proof.

- Consider augmenting \(f \) to \(f' \)
- For contradiction, pick \(v \) that minimizes \(\delta_{f'}(s, v) \) subject to:
 \[
 \delta_{f'}(s, v) < \delta_f(s, v)
 \]
 and let \(u \) be vertex before \(v \) on shortest path in \(G_{f'} \) from \(s \) to \(v \)
- Claim \((u, v) \notin E_f\)
 - Otherwise \(\delta_f(s, v) \leq \delta_f(s, u) + 1 \)
 - But \(\delta_f(s, u) \leq \delta_{f'}(s, u) \) and so \(\delta_f(s, v) \leq \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v) \)
- \((u, v) \notin E_f \) and \((u, v) \in E_{f'}\) implies augmentation contains \((v, u)\)
- Since augmentation was shortest path:
 \[
 \delta_f(s, v) = \delta_f(s, u) - 1 \leq \delta_{f'}(s, u) - 1 = \delta_{f'}(s, v) - 2
 \]
Lemma

Between occasions when \((u, v)\) is critical, \(\delta_f(s, u)\) increases by at least 2.

Proof.

- Let \((u, v)\) be critical in the augmentation of \(f\)
- Since \((u, v)\) on shortest path: \(\delta_f(s, u) = \delta_f(s, v) - 1\)
- After augmentation \((u, v)\) disappears from residual network!
- Let \(f''\) be next flow with \((u, v) \in G_{f''}\) and \(f'\) be flow right before \(f''\)
- \((u, v) \notin G_f\) but \((u, v) \in G_{f''}\) implies \((v, u)\) used to augment \(f'\)
- Therefore \(\delta_{f'}(s, v) = \delta_{f'}(s, u) - 1\) and so

\[
\delta_f(s, u) = \delta_f(s, v) - 1 \leq \delta_{f'}(s, v) - 1 = \delta_{f'}(s, u) - 2
\]