Shortest Paths

Let $G = (V, E)$ be a directed graph with weights $w : E \to \mathbb{R}^+$.

Definition
For path $p = (v_1, \ldots, v_k)$ be a path, define

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

The shortest path between u and v is

$$\delta(u, v) = \min\{w(p) : p \text{ is a path from u to v}\}$$

if there is a path from u to v and ∞ otherwise.
Dijkstra’s Warm-Up

Single-Source Problem: Given $s \in V$, find $\delta(s, v)$ for all $v \in V$.

Dijkstra’s algorithm solves problem if all edges are non-negative:

- Maintains array $(d[v] : v \in V)$ where $d[v]$ will always be ∞ or the length of some path from s to v, not necessarily the shortest. Hence,

 $$d[v] \geq \delta(s, v)$$

- Maintains a set of processed vertices R. We’ll prove that for all $v \in R$:

 $$d[v] = \delta(s, v)$$
Dijkstra's Algorithm

Algorithm

1. \(d[s] = 0 \) and for \(s \neq v \):
 \[
d[v] = w(s, v) \text{ if } (s, v) \in E \text{ and } \infty \text{ otherwise}
 \]

2. \(R \leftarrow \{s\} \)

3. While \(|R| < |V| \):
 3.1 \(u \leftarrow \arg\min_{v \notin R} d[v] \)
 3.2 \(R \leftarrow R + u \)
 3.3 For each \(v \notin R \) that is a neighbor of \(u \):
 \[
d[v] = \min(d[u] + w(u, v), d[v])
 \]

Running Time: \(O(|V|^2) \) for simple implementation but can be improved.
Example

1. Step 1: $d[s] = 0, d[a] = 3, d[b] = 6, d[c] = \infty$, and $R = \{s\}$

2. Step 2: $d[s] = 0, d[a] = 3, d[b] = 5, d[c] = 12$, and $R = \{s, a\}$

3. Step 3: $d[s] = 0, d[a] = 3, d[b] = 5, d[c] = 8$, and $R = \{s, a, b\}$

4. Step 4: $d[s] = 0, d[a] = 3, d[b] = 5, d[c] = 8$, and $R = \{s, a, b, c\}$
Correctness of Algorithm

The correctness of the algorithm follows because a) $d[v]$ never increases, b) $d[v] \geq \delta(s, u)$ at all times, and c) appealing to the following lemma:

Lemma

When u is added to R, $d[u] = \delta(s, u)$
When \(u \) gets added to \(R \), \(d[u] \) is correct (1/2)

Let \(d_u[v] \) be value of \(d[v] \) just before \(u \) is chosen as minimum.

Lemma

For all \(u \), \(d_u[u] = \delta(s, u) \)

- **By contradiction**: Let \(u \) be first vertex put in \(R \) with \(d_u[u] > \delta(s, u) \)
- Consider a shortest path from \(s \) to \(u \). Let \(y \) be first vertex not in \(R \). Note that \(y \) may or may not be \(u \).

 - **Claim**: \(d_u[y] = \delta(s, y) \)
 - Let \(x \) be the predecessor of \(y \) on the path. Note that \(x \in R \).
 - \(d_x[x] = \delta(s, x) \) by assumption that \(u \) is first bad vertex.
 - After iteration where \(x \) is added to \(R \): \(d[y] \leq \delta(s, x) + w(x, y) \)
 - \(\delta(s, x) + w(x, y) = \delta(s, y) \) since path included shortest path to \(y \)
When u gets added to R, $d[u]$ is correct (2/2)
Let $d_u[v]$ be value of $d[v]$ just before u is chosen as minimum.

Lemma
For all u, $d_u[u] = \delta(s, u)$

- By contradiction: Let u be first vertex put in R with $d_u[u] > \delta(s, u)$
- Consider a shortest path from s to u. Let y be first vertex not in R. Note that y may or may not be u.

- Claim: $d_u[y] = \delta(s, y)$
- Since y lies on shortest path to u: $\delta(s, y) \leq \delta(s, u)$
- Putting above two lines together:
 $$d_u[y] = \delta(s, y) \leq \delta(s, u) < d_u[u]$$

- If $y \neq u$: Contradiction because u was the next minimum and so
 $$d_u[u] \leq d_u[y]$$

- If $y = u$: Contradicts $d_u[y] < d_u[u]$