Outline

Simplex in more detail
Formulating Vertex Cover as a Linear (?) Program

- Given graph $G = (V, E)$, for each node $v \in V$, create variable x_v
- For each edge $(u, v) \in E$, create constraint $x_v + x_u \geq 1$

Does this mean we can solve Vertex Cover in poly-time?

No, need to constrain $x_v \in \{0, 1\}$. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the optimal solution will automatically be integral.
Formulating Vertex Cover as a Linear (?) Program

- Given graph $G = (V, E)$, for each node $v \in V$, create variable x_v
- For each edge $(u, v) \in E$, create constraint $x_v + x_u \geq 1$

Minimize $\sum_{v \in V} x_v$ subject to

$$x_v + x_u \geq 1 \quad \text{for all } (u, v) \in E$$
$$x_v \leq 1 \quad \text{for all } v \in V$$
$$x_v \geq 0 \quad \text{for all } v \in V$$

Does this mean we can solve Vertex Cover in poly-time?

No, need to constrain $x_v \in \{0, 1\}$. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the optimal solution will automatically be integral.
Formulating Vertex Cover as a Linear (?) Program

- Given graph $G = (V, E)$, for each node $v \in V$, create variable x_v
- For each edge $(u, v) \in E$, create constraint $x_v + x_u \geq 1$

Minimize $\sum_{v \in V} x_v$ subject to

$$x_v + x_u \geq 1 \quad \text{for all } (u, v) \in E$$
$$x_v \leq 1 \quad \text{for all } v \in V$$
$$x_v \geq 0 \quad \text{for all } v \in V$$

Does this mean we can solve Vertex Cover in poly-time? No, need to constrain $x_v \in \{0, 1\}$. Program is an integer linear program (ILP).
Formulating Vertex Cover as a Linear (?) Program

- Given graph $G = (V, E)$, for each node $v \in V$, create variable x_v
- For each edge $(u, v) \in E$, create constraint $x_v + x_u \geq 1$

Minimize $\sum_{v \in V} x_v$ subject to

$$x_v + x_u \geq 1 \text{ for all } (u, v) \in E$$
$$x_v \leq 1 \text{ for all } v \in V$$
$$x_v \geq 0 \text{ for all } v \in V$$

Does this mean we can solve Vertex Cover in poly-time? No, need to constrain $x_v \in \{0, 1\}$. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the optimal solution will automatically be integral.
LP Relaxation

- Vertex cover can be expressed as the following integer program

\[
\begin{align*}
\text{Minimize} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_v + x_u \geq 1 \text{ for all } (u, v) \in E \\
& \quad x_v \leq 1 \text{ for all } v \in V \\
& \quad x_v \geq 0 \text{ for all } v \in V
\end{align*}
\]

where each \(x_v \in \{0, 1\} \).

- Relax: Replace \(x_v \in \{0, 1\} \) constraint by \(0 \leq x_v \leq 1 \)

- Solve: Let \(\hat{x}_v \) be optimal solution.

- Round: Let \(x'_v = 1 \) if \(\hat{x}_v \geq 1/2 \) and 0 otherwise.

- Final solution is feasible for the original ILP and is a 2-approx.
LP Relaxation

- Vertex cover can be expressed as the following integer program
- Minimize $\sum_{v \in V} x_v$ subject to

$$ x_v + x_u \geq 1 \quad \text{for all } (u, v) \in E $$

$$ x_v \leq 1 \quad \text{for all } v \in V $$

$$ x_v \geq 0 \quad \text{for all } v \in V $$

where each $x_v \in \{0, 1\}$.

Relax: Replace $x_v \in \{0, 1\}$ constraint by $0 \leq x_v \leq 1$

Solve: Let \hat{x}_v be optimal solution.

Round: Let $x'_v = 1$ if $\hat{x}_v \geq 1/2$ and 0 otherwise.

Final solution is feasible for the original ILP and is a 2-approx.
LP Relaxation

- Vertex cover can be expressed as the following integer program
- Minimize $\sum_{v \in V} x_v$ subject to

 $x_v + x_u \geq 1$ for all $(u, v) \in E$

 $x_v \leq 1$ for all $v \in V$

 $x_v \geq 0$ for all $v \in V$

 where each $x_v \in \{0, 1\}$.
- Relax: Replace $x_v \in \{0, 1\}$ constraint by $0 \leq x_v \leq 1$
LP Relaxation

- Vertex cover can be expressed as the following integer program
- Minimize $\sum_{v \in V} x_v$ subject to
 \[
 \begin{align*}
 x_v + x_u &\geq 1 \quad \text{for all } (u, v) \in E \\
 x_v &\leq 1 \quad \text{for all } v \in V \\
 x_v &\geq 0 \quad \text{for all } v \in V
 \end{align*}
 \]
 where each $x_v \in \{0, 1\}$.
- Relax: Replace $x_v \in \{0, 1\}$ constraint by $0 \leq x_v \leq 1$
- Solve: Let \hat{x}_v be optimal solution.
Vertex cover can be expressed as the following integer program

Minimize $\sum_{v \in V} x_v$ subject to

\[
x_v + x_u \geq 1 \quad \text{for all } (u, v) \in E
\]
\[
x_v \leq 1 \quad \text{for all } v \in V
\]
\[
x_v \geq 0 \quad \text{for all } v \in V
\]

where each $x_v \in \{0, 1\}$.

Relax: Replace $x_v \in \{0, 1\}$ constraint by $0 \leq x_v \leq 1$

Solve: Let \hat{x}_v be optimal solution.

Round: Let $x'_v = 1$ if $\hat{x}_v \geq 1/2$ and 0 otherwise.
Vertex cover can be expressed as the following integer program

Minimize $\sum_{v \in V} x_v$ subject to

$$x_v + x_u \geq 1 \quad \text{for all } (u, v) \in E$$
$$x_v \leq 1 \quad \text{for all } v \in V$$
$$x_v \geq 0 \quad \text{for all } v \in V$$

where each $x_v \in \{0, 1\}$.

Relax: Replace $x_v \in \{0, 1\}$ constraint by $0 \leq x_v \leq 1$

Solve: Let \hat{x}_v be optimal solution.

Round: Let $x'_v = 1$ if $\hat{x}_v \geq 1/2$ and 0 otherwise.

Final solution is feasible for the original ILP and is a 2-approx.
Linear Programming: Review

Primal and Dual Linear Programs:

<table>
<thead>
<tr>
<th>Primal LP</th>
<th>Dual LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max c^T x)</td>
<td>(\min y^T b)</td>
</tr>
<tr>
<td>(Ax \leq b)</td>
<td>(y^T A \geq c^T)</td>
</tr>
<tr>
<td>(x \geq 0)</td>
<td>(y \geq 0)</td>
</tr>
</tbody>
</table>

Theorem

Let \(\text{OPT}_{\text{primal}} \) be optimal solution of Primal LP and let \(\text{OPT}_{\text{dual}} \) be optimal solution of Dual LP: If both are bounded and feasible,

\[
\text{OPT}_{\text{primal}} = \text{OPT}_{\text{dual}}
\]

and hence, any feasible solution of the dual LP upper bounds \(\text{OPT}_{\text{primal}} \).
Linear Programming: Review

Primal and Dual Linear Programs:

<table>
<thead>
<tr>
<th>Primal LP</th>
<th>Dual LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max c^T x)</td>
<td>(\min y^T b)</td>
</tr>
<tr>
<td>(Ax \leq b)</td>
<td>(y^T A \geq c^T)</td>
</tr>
<tr>
<td>(x \geq 0)</td>
<td>(y \geq 0)</td>
</tr>
</tbody>
</table>

Theorem

Let \(\text{OPT}_{\text{primal}}\) be optimal solution of Primal LP and let \(\text{OPT}_{\text{dual}}\) be optimal solution of Dual LP: If both are bounded and feasible,

\[\text{OPT}_{\text{primal}} = \text{OPT}_{\text{dual}}\]

and hence, any feasible solution of the dual LP upper bounds \(\text{OPT}_{\text{primal}}\).

Applications of duality include a) max flow equals min cut and b) the max matching size equals the min vertex cover size in a bipartite graph.

LPs can be solved in poly-time but adding integral constraints makes the problem NP-hard.
Outline

Simplex in more detail
Approximation Ratios

Definition
An algorithm for a minimization problem is an α-approximation if for all instances,

\[
\frac{\text{value returned by the algorithm}}{\text{optimal value}} \leq \alpha .
\]

For a maximization problem, we want the reciprocal to be at most α.

Examples:
- 2-approx for max-cut (local search technique)
- 3/2-approx for metric traveling salesman
- 2-approx for metric k-center clustering (in homework)
- $O(\log n)$-approx for weighted set-cover (charging technique)
- 2-approx for vertex cover (LP relaxation technique)

A reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/
One Final Approximation Technique: Approximate Input

Definition
A problem has a fully polynomial time approximation scheme (FPTAS) if and only if for all \(\epsilon > 0 \) it has \((1 + \epsilon)\) approximation where the run time is polynomial in \(1/\epsilon \) and polynomial in the size of the input.

General Knapsack Problem:
1. Input: A set of items numbered 1, 2, ..., \(n \), where each the \(i \)-th item has weight \(w_i \) and value \(v_i \). \(C \) is the capacity of your knapsack.
2. Goal: Find a subset \(B \) of the items with maximum total value subject to \(\sum_{i \in B} w_i \leq C \).

Rough idea for a FPTAS. There's a dynamic program that solves it exactly in \(O(n^2 V) \) where \(V = \max_i v_i \). This would be polynomial if \(V = \text{poly}(n) \).

Scale down the values, e.g., \(v_1 = 101, v_2 = 93, v_3 = 124 \,...\rightarrow v'_1 = 10, v'_2 = 9, v'_3 = 12 \,...\). If we scale at the appropriate precision, solving the problem with the new values gives a good approximation in polynomial time.
One Final Approximation Technique: Approximate Input

Definition
A problem has a fully polynomial time approximation scheme (FPTAS) if and only if for all $\epsilon > 0$ it has $(1 + \epsilon)$ approximation where the run time is polynomial in $1/\epsilon$ and polynomial in the size of the input.

General Knapsack Problem:
1. Input: A set of items numbered $1, 2, \ldots, n$, where each the i-th item has weight w_i and value v_i. C is the capacity of your knapsack.
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.
One Final Approximation Technique: Approximate Input

Definition
A problem has a **fully polynomial time approximation scheme (FPTAS)** if and only if for all $\epsilon > 0$ it has $(1 + \epsilon)$ approximation where the run time is polynomial in $1/\epsilon$ and polynomial in the size of the input.

General Knapsack Problem:
1. **Input:** A set of items numbered $1, 2, \ldots, n$, where each the i-th item has weight w_i and value v_i. C is the capacity of your knapsack.
2. **Goal:** Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.

Rough idea for a FPTAS. There’s a dynamic program that solves it exactly in $O(n^2 V)$ where $V = \max_i v_i$. This would be polynomial if $V = \text{poly}(n)$.
One Final Approximation Technique: Approximate Input

Definition
A problem has a fully polynomial time approximation scheme (FPTAS) if and only if for all $\epsilon > 0$ it has $(1 + \epsilon)$ approximation where the run time is polynomial in $1/\epsilon$ and polynomial in the size of the input.

General Knapsack Problem:
1. Input: A set of items numbered 1, 2, ..., n, where each the i-th item has weight w_i and value v_i. C is the capacity of your knapsack.
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.

Rough idea for a FPTAS. There’s a dynamic program that solves it exactly in $O(n^2 V)$ where $V = \max_i v_i$. This would be polynomial if $V = \text{poly}(n)$. Scale down the values, e.g., $v_1 = 101, v_2 = 93, v_3 = 124 \ldots \rightarrow v'_1 = 10, v'_2 = 9, v'_3 = 12 \ldots$

If we scale at the appropriate precision, solving the problem with the new values gives a good approximation in polynomial time.
Outline

Simplex in more detail
Outline

Simplex in more detail
Divide and Conquer Methodology

- Goal: Solve problem P on an instance I of “size” n.
- Divide & Conquer Method:
 - Transform I into smaller instances I_1, \ldots, I_a each of “size” n/b
 - Solve problem P on each of I_1, \ldots, I_a by recursion
 - Combine the solutions to get a solution of I
- Examples: Merge Sort, Strassen’s Algorithm, Minimum Distance, Fourier Transform.
Divide and Conquer Methodology

- **Goal:** Solve problem P on an instance I of “size” n.
- **Divide & Conquer Method:**
 - Transform I into smaller instances I_1, \ldots, I_a each of “size” n/b
 - Solve problem P on each of I_1, \ldots, I_a by recursion
 - Combine the solutions to get a solution of I
- **Examples:** Merge Sort, Strassen’s Algorithm, Minimum Distance, Fourier Transform.

Let $T(n)$ be running time of algorithm on instance of size n. Then

$$T(1) = \Theta(1), \quad T(n) = aT(n/b) + \Theta(n^\alpha)$$

where $\Theta(n^\alpha)$ is time to make new instances and combine solutions.

Theorem (Master Theorem)

If a, b, α are constants, then $T(n) = \begin{cases}
\Theta(n^\alpha) & \text{if } \alpha > \log_b a \\
\Theta(n^{\log_b a}) & \text{if } \alpha < \log_b a \\
\Theta(n^\alpha \log n) & \text{if } \alpha = \log_b a
\end{cases}$
Simplex in more detail
Generic Problem and Greedy Algorithms

Definition
A subset system $S = (E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

$$\text{if } B \in \mathcal{I} \text{ and } A \subset B \text{ then } A \in \mathcal{I}$$

i.e., “\mathcal{I} is closed under inclusion”

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

1. $A = \emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$
Matroid Definition and Theorem

Definition
A matroid is a subset system (E, I) that satisfies the exchange property: if $A, B \in I$ such that $|A| < |B|$, then $A + e \in I$ for some $e \in B \setminus A$.

Theorem
For any subset system (E, I), the greedy algorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid.

▶ A matroid can also be characterized by the cardinality theorem.
▶ Maximum bipartite matching can be expressed as intersection of two matroids and can therefore be solved in polynomial time.
▶ Solving the intersection of three matroids becomes NP-hard.
Outline

Simplex in more detail
Dynamic Programming and Shortest Paths

When to use dynamic programming...

▶ *Optimal Substructure*: The solution to the problem can be found using solutions to smaller sub-problems.
▶ *Overlap of Sub-Problems*: By taking advantage of the fact that many identical sub-problems are created, a dynamic programming algorithm may be more efficient than a divide and conquer algorithm.

Shortest path algorithms...

▶ *Floyd-Warshall Algorithm*: $O(|V|^3)$
▶ *Dijkstra’s Algorithm*: Positive weights! $O(|E| + |V| \log |V|)$.
▶ *Seidel’s Algorithm*: Unweighted Graphs! $O(|V|^{2.38})$ running time.
Outline

Simplex in more detail
Definitions

Input:
▶ Directed Graph \(G = (V, E) \)
▶ Capacities \(C(u, v) > 0 \) for \((u, v) \in E \) and \(C(u, v) = 0 \) for \((u, v) \notin E \)
▶ A source node \(s \), and sink node \(t \)

Output: A flow \(f \) from \(s \) to \(t \) where \(f : V \times V \to \mathbb{R} \) satisfies
▶ Skew-symmetry: \(\forall u, v \in V, f(u, v) = -f(v, u) \)
▶ Conservation of Flow: \(\forall v \in V - \{s, t\}, \sum_{u \in V} f(u, v) = 0 \)
▶ Capacity Constraints: \(\forall u, v \in V, f(u, v) \leq C(u, v) \)

Goal: Maximize “size of the flow”, i.e., the total flow coming leaving \(s \):

\[
|f| = \sum_{v \in V} f(s, v)
\]
Capacity/Flow

\[s \rightarrow v_3 \quad 16/11 \quad v_1 \rightarrow v_2 \quad 12/12 \quad v_2 \rightarrow t \quad 20/15 \]

\[s \rightarrow v_1 \quad 10/0 \quad v_3 \rightarrow v_2 \quad 9/4 \quad v_2 \rightarrow v_4 \quad 7/7 \]

\[v_1 \rightarrow v_3 \quad 4/1 \quad v_1 \rightarrow v_4 \quad 14/11 \]

\[v_3 \rightarrow v_4 \quad 4/4 \]

\[s \rightarrow v_4 \quad 13/8 \]

\[v_4 \rightarrow t \quad 4/4 \]
Cut Definitions

Definition
An \(s - t \) cut of \(G \) is a partition of the vertices into two sets \(A \) and \(B \) such that \(s \in A \) and \(t \in B \).

Definition
The capacity of a cut \((A, B) \) is \(C(A, B) = \sum_{u \in A, v \in B} C(u, v) \)

Definition
The flow across a cut \((A, B) \) is \(f(A, B) = \sum_{u \in A, v \in B} f(u, v) \)

Theorem (Max-Flow Min-Cut)
For any flow network and flow \(f \), the following statements are equivalent:
1. \(f \) is a maximum flow.
2. There exists an \(s - t \) cut \((A, B) \) such that \(|f| = C(A, B) \)

Went over Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic to find max-flow.
Outline

Simplex in more detail
Probability and Examples

- For arbitrary events A and B,
 \[
P[A \text{ and } B] = P[A \text{ given } B] P[B]
 \]
 and A and B are independent if $P[A \text{ and } B] = P[A] P[B]$.

- Union Bound: $P[A \text{ or } B] \leq P[A] + P[B]$.

- Expectation: $E[X] = \sum_r r P[X = r]$.

- Variance random variable: $\text{Var}[X] = \sigma^2_X = E[(X - E[X])^2]$.

- Linearity of variance if X and Y are independent:
 \[
 \text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y]
 \]

Examples: Quicksort, Karger’s Randomized Min-Cut Algorithm, Schwartz-Zippel, Lazy Select, Balls and Bins, Count-Min Sketch...
Tail Bounds

Theorem (Markov)

Let Y be a non-negative random variable. Then, for any $t > 0$,

$$\mathbb{P}[Y \geq t \mathbb{E}(X)] \leq \frac{1}{t}.$$

Theorem (Chebyshev)

Let X be any random variable. Then, for any $t > 0$,

$$\mathbb{P} [|X - \mathbb{E}(X)| \geq t] \leq \frac{\text{Var}(X)}{t^2}.$$

Theorem

Let X_1, \ldots, X_n be independent boolean random variables and $X = \sum_i X_i$. Then for any $\delta > 0$,

$$\mathbb{P} [X > (1 + \delta) \mu] < e^{-\delta^2 \mu / 3} \quad \text{and} \quad \mathbb{P} [X < (1 - \delta) \mu] < e^{-\delta^2 \mu / 2}$$
Outline

Simplex in more detail
NP Completeness

1. P: Problems for which there exists a poly-time algorithm
2. NP: Problems for which there exists a poly-time algorithm taking advice:
 - If the answer should be “yes”, then there exists advice that leads the algorithm to output “yes”
 - If the answer is “no”, then there doesn’t exist advice that would lead the algorithm to output “yes”
3. A problem Π is NP-hard if for any $\Pi' \in NP$: $\Pi' \leq_P \Pi$
4. A problem Π is NP-complete if $\Pi \in NP$ and Π is NP-hard

Theorem

3-SAT, CLIQUE, VERTEX-COVER, INDEPENDENT-SET etc. are NP-Complete.
NP Completeness

1. P: Problems for which there exists a poly-time algorithm
2. NP: Problems for which there exists a poly-time algorithm taking advice advice:
 - If the answer should be “yes”, then there exists advice that leads the algorithm to output “yes”
 - If the answer is “no”, then there doesn’t exist advice that would lead the algorithm to output “yes”
3. A problem Π is NP-hard if for any $\Pi' \in NP$: $\Pi' \leq_P \Pi$
4. A problem Π is NP-complete if $\Pi \in NP$ and Π is NP-hard

Theorem

3-SAT, $CLIQUE$, $VERTEX-COVER$, $INDEPENDENT-SET$ etc. are NP-Complete.

Can sometimes show that a problem is hard to approximate within a certain factor. For example, in the homework question about locating stores in various towns you essentially showed that beating a factor 2 approximation for the problem would solve DOMINATING-SET.
Approx Algorithms and Reductions: Cautionary Tale!

Suppose $\Pi' \leq_P \Pi$ and we have a polynomial time α-approximation for Π, do we necessarily have an α-approximation for Π?

Problem: INDEPENDENT-SET

Input: An undirected graph $G = (V, E)$.

Output: A set $U \subset V$ of maximum size such that no two vertices in U are connected by a single edge.

Lemma: INDEPENDENT-SET \leq_P VERTEX-COVER

Proof.

$U \subset V$ is an independent set iff $V - U$ is a vertex cover. So an instance of (G, k) of INDEPENDENT-SET is a "yes" instance iff the instance $(G, n - k)$ of VERTEX-COVER is a "yes" instance.

But using a factor 2-approximation for Vertex-Cover may give a factor $\Omega(n)$ approximation for Independent-Set.
Approx Algorithms and Reductions: Cautionary Tale!

Suppose $\Pi' \leq_P \Pi$ and we have a polynomial time α-approximation for a Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET

- Input: An undirected graph $G = (V, E)$.
- Output: A set $U \subset V$ of maximum size such that no two vertices in U are connected by a single edge.
Approx Algorithms and Reductions: Cautionary Tale!

Suppose $\Pi' \leq_P \Pi$ and we have an polynomial time α-approximation for a Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET

- Input: An undirected graph $G = (V, E)$.
- Output: A set $U \subset V$ of maximum size such that no two vertices in U are connected by a single edge.

Lemma

$\text{INDEPENDENT-SET} \leq_P \text{VERTEX-COVER}$
Approx Algorithms and Reductions: Cautionary Tale!

Suppose $\Pi' \leq_P \Pi$ and we have a polynomial time α-approximation for Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET

- Input: An undirected graph $G = (V, E)$.
- Output: A set $U \subset V$ of maximum size such that no two vertices in U are connected by a single edge.

Lemma

$\text{INDEPENDENT-SET} \leq_P \text{VERTEX-COVER}$

Proof.

$U \subset V$ is an independent set iff $V - U$ is a vertex cover. So an instance of (G, k) of INDEPENDENT-SET is a “yes” instance iff the instance $(G, n - k)$ of VERTEX-COVER is a “yes” instance. □
Suppose $\Pi' \leq_p \Pi$ and we have an polynomial time α-approximation for a Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET
- **Input:** An undirected graph $G = (V, E)$.
- **Output:** A set $U \subset V$ of maximum size such that no two vertices in U are connected by a single edge.

Lemma
$\text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER}$

Proof.
$U \subset V$ is an independent set iff $V - U$ is a vertex cover. So an instance of (G, k) of INDEPENDENT-SET is a “yes” instance iff the instance $(G, n - k)$ of VERTEX-COVER is a “yes” instance.

But using a factor 2-approximation for Vertex-Cover may give a factor $\Omega(n)$ approximation for Independent-Set.
And finally...

Good luck with the exam!