Informal Summary from Last Time

1. Decision problem Π is in P if there is a polynomial time algorithm that correctly answers Π

2. Decision problem Π is in NP if there is a polynomial time algorithm that takes advice:
 - If the answer should be “yes”, then there exists advice that leads the algorithm to output “yes”
 - If the answer is “no”, then there doesn’t exist advice that would lead the algorithm to output “yes”

3. A problem Π is NP-hard if for any $\Pi' \in NP$: $\Pi' \leq_P \Pi$

4. A problem Π is NP-complete if $\Pi \in NP$ and Π is NP-hard

5. To show Π is NP-complete it suffices to show that
 - Π is in NP
 - $\Pi' \leq_P \Pi$ for some Π' that is already known to be NP-hard

6. It’s widely believed the $P \neq NP$ but finding a polynomial time algorithm for any NP-hard problem would prove $P = NP$.

2/6
Problem: Subset-Sum

- **Input:** A set S of n integers $\{s_{1}, s_{2}, \ldots, s_{m}\}$ and a target integer t.
- **Question:** Is there a subset $S' \subset S$ such that $t = \sum_{s \in S'} s$?
Subset-Sum is NP-Complete

Theorem

Subset-Sum is NP-Complete

Proof.

1. Easy to show Subset-Sum is in NP
2. It suffices to show 3-SAT ≤\text{p} Subset-Sum
3. Given
 \((l_{1,1} \lor l_{1,2} \lor l_{1,3}) \land (l_{2,1} \lor l_{2,2} \lor l_{2,3}) \land \ldots \land (l_{m,1} \lor l_{m,2} \lor l_{m,3})\) in
 \(n\) variables, define the set of integers (expressed in decimal):

 \[
 \text{For } i \in [n]: s_i = (1, 0, \ldots, 0, y_m, \ldots, y_1), \quad s'_i = (1, 0, \ldots, 0, z_m, \ldots, z_1)
 \]

 where \(y_j = 1\) if \(x_i\) is a literal in \(j\)-th clause and 0 otherwise
 and \(z_j = 1\) if \(\overline{x_i}\) is a literal in \(j\)-th clause and 0 otherwise.

 \[
 t = (1, \ldots, 1, 3, \ldots, 3)
 \]
Suppose \(\phi \) is satisfiable:

1. Fix a satisfying assignment
2. Let \(S' = \{s_i : x_i = \text{TRUE}\} \cup \{s'_i : x_i = \text{FALSE}\} \)
3. So far, for some \(a_i \geq 1 \):
 \[
 \sum_{s \in S'} s = (1, \ldots, 1, a_m, a_{m-1}, \ldots, a_1)
 \]
4. Can add “\(h \)” elements to \(S' \) such that
 \[
 \sum_{s \in S'} s = (1, \ldots, 1, 3, \ldots, 3) = t
 \]
Subset S' that sums to t implies ϕ is satisfiable

Suppose $\sum_{s \in S'} s = t$:

1. For each $i \in [n]$, exactly one of s_i and s'_i are in S'
2. Let x_i be TRUE if $s_i \in S'$ and FALSE otherwise
3. Since there are only two "h" elements corresponding to each clause, each clause must be satisfied.