Outline

Polynomial Time Reductions

NP Completeness
Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- **Input:** Given graph $G = (V, E)$ and integer k.
- **Question:** Does G contain a clique of size k?
Problem 2: 3-SAT

- **Input:** A boolean formula $\phi(x_1, \ldots, x_n)$ in *conjunctive normal form* with m clauses and 3 literals per clause, e.g.,

$$ (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) $$

where \overline{x}_i is “not x_i”, \land is “and”, \lor is “or.” We call x_i and \overline{x}_i *literals*.

- **Question:** Is there a setting of each x_i to TRUE or FALSE such that the formula is satisfied.
A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

$$\phi = (l_{1,1} \lor l_{1,2} \lor l_{1,3}) \land (l_{2,1} \lor l_{2,2} \lor l_{2,3}) \land \ldots \land (l_{m,1} \lor l_{m,2} \lor l_{m,3})$$

in poly-time, we can construct $G_\phi = (V_\phi, E_\phi)$:

$$V_\phi = \{l_{i,j} : i \in [m], j \in [3]\}$$

$$E_\phi = \{(l_{i,j}, l_{k,l}) : i, k \in [m], j \in [3], i \neq k, l_{i,j} \neq \overline{l_{k,l}}\}$$

We'll show ϕ is satisfiable iff G_ϕ has a clique of size m
\(\phi \) is satisfiable iff \(G_\phi \) has a clique of size \(m \)

Suppose \(\phi \) is satisfiable:
1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let \(Y \) be set of corresponding nodes
3. \(G_\phi[Y] \) is a clique because \(x_k \) and \(\bar{x}_k \) can’t both be in \(Y \) for any \(k \)

Suppose \(G_\phi \) has a clique of size \(m \):
1. Let \(Y \) be the clique of size \(m \)
2. For each clause:
 - Exactly one node \(l \) from \(i \)-th clause is in \(Y \)
 - Set \(x_k = \text{TRUE} \) if \(l = x_k \) and set \(x_k = \text{FALSE} \) if \(l = \bar{x}_k \)
3. We can’t set \(x_k \) to be true and false because literals \(x_k \) and \(\bar{x}_k \) can’t both be in \(Y \)
Polynomial Time Reduction

Definition

Π is a decision problem if it only has a “yes” or “no” answer.

Definition

Given two decision problems Π₁, Π₂ we say Π₂ is polynomial time reducible to Π₁ iff there exists a polynomial time algorithm f that transforms any instance X of Π₂ to an instance f(X) of Π₁ such that:

\[(X \text{ is a “yes” instance of } Π₂) \iff (f(X) \text{ is a “yes” instance of } Π₁)\]

We write Π₂ ≤ₚ Π₁ to denote “Π₂ is polynomial time reducible to Π₁”.

Some Examples:

- **INDEPENDENT-SET ≤ₚ CLIQUE**
- **VERTEX-COVER ≤ₚ SET-COVER**
- **VERTEX-COVER ≤ₚ INDEPENDENT-SET**
Outline

Polynomial Time Reductions

NP Completeness
P and NP Definitions

Definition (P)
\(\Pi \in P \) iff there exists a polynomial time algorithm \(A \) such that:
\[
(\text{\(X \) is a “yes” instance of \(\Pi \))} \iff (A(X) = \text{“yes”})
\]

Definition (NP)
\(\Pi \in NP \) iff there exists a polynomial time algorithm \(A \) such that:
\[
(\text{\(X \) is a “yes” instance of \(\Pi \))} \implies (\exists Y: |Y| = \text{poly}(|X|), A(X, Y) = \text{“yes”})
\]
\[
(\text{\(X \) is a “no” instance of \(\Pi \))} \implies (\forall Y: |Y| = \text{poly}(|X|), A(X, Y) = \text{“yes”})
\]

We call \(Y \) a witness.
Example: Clique

- **Input**: Given graph $G = (V, E)$ and integer k.
- **Question**: Does G contain a clique of size k?

Lemma

Clique is in NP.

Proof.

1. Suppose the witness Y encodes a set of k nodes in V and $A(G, Y)$ checks if the induced graph on Y, $G[Y]$ is a clique.
2. A is a polynomial time algorithm.
3. If there exists a clique of size k, there exists Y of size k such that $A(G, Y)$ outputs “yes”
4. If there doesn’t exist a clique of size k, there doesn’t exist Y of size k such that $A(G, Y)$ outputs “yes”

Example for a problem that is not known to be in NP: Is a quantified boolean formula, e.g., $\forall x \exists y \exists z \ ((x \lor z) \land y)$, true?
NP-Completeness

Definition
A decision problem Π is NP-Hard iff for all Π′ ∈ NP, Π′ ≤_P Π.

Definition
A decision problem Π is NP-Complete iff it is both NP-Hard and in NP.

Remark 1: If Π is NP-Complete and Π ∈ P then \(P = NP \)

Remark 2: In 1971, Cook showed 3-SAT is NP-Complete. Because

\[\text{CLIQUE} \in NP \text{ and } 3\text{-SAT} \leq_P \text{CLIQUE} \]

we now know CLIQUE is NP-Complete.