CMPSCI 611: Advanced Algorithms
Lecture 17: Balls and Bins and Schwartz-Zippel

Andrew McGregor

Last Compiled: November 2, 2020
Balls and Bins

Throw m balls into n bins where each throw is independent.

- **Birthday Paradox**: How large can m be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.
- **Coupon Collecting**: How large must m be such that all bins get at least one ball?
- **Load Balancing**: What is the maximum number of balls that fall into the same bin? Application: Assigning jobs to different machines without overloading any machine.
Birthday Paradox

Lemma
\[P \left[\text{first } m \text{ balls fall in distinct bins} \right] \leq e^{-m(m-1)/(2n)}. \]

Proof.

- Let \(A_i \) be event that the \(i \)-th ball lands in a bin not containing any of the first \(i - 1 \) balls.
- \[P \left[\cap_{1 \leq i \leq m} A_i \right] = P[A_1]\, P[A_2|A_1]\, \ldots \, P[A_m| \cap_{1 \leq i \leq m-1} A_i] \]
- \[P[A_i| \cap_{1 \leq j \leq i-1} A_j] = 1 - (i - 1)/n \]
- Putting it together and using \(\sum_{1 \leq i \leq a} i = (a + 1)a/2 \):

\[
P \left[\cap_{1 \leq i \leq m} A_i \right] = \prod_{1 \leq i \leq m} \left(1 - \frac{i - 1}{n} \right) \leq e^{-\sum_{i=1}^{m} \frac{i-1}{n}} = e^{-m(m-1)/(2n)}
\]

With \(n = 365 \) and \(m = 29 \), probability \(< e^{-1} \). Tighter analysis possible.
Coupon Collecting

Suppose you throw \(r \) balls into \(n \) bins. If each ball is equally likely to land in each bin, how large does \(r \) need to be such that a ball lands in every bin with probability at least \(1 - 1/n \). We’ll show \(r = 2n \ln n \) are sufficient.

- Let \(A_i \) be the event that the \(i \)th bin is empty after \(r \) balls are thrown. Then,

\[
\mathbb{P}[A_i] = (1 - 1/n)^r = (1 - 1/n)^{2n \ln n} \leq e^{-2 \ln n} = 1/n^2
\]

- Then \(A_1 \cup A_2 \cup \ldots \cup A_n \) is the event that there is an empty bin:

\[
\mathbb{P}[A_1 \cup A_2 \cup \ldots \cup A_n] \leq \mathbb{P}[A_1] + \mathbb{P}[A_2] + \ldots + \mathbb{P}[A_n] = n \times 1/n^2 = 1/n
\]
Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.

- What’s the probability that k or more items land in bin 1?

- If X_1 is the number of balls that land in bin 1 then X_1 is a binomial distribution with m trials and $p = 1/n$.

- **Lemma:** $P(X_1 \geq k) \leq \binom{m}{k} p^k$.

- If $m/n = 1$ and $k = 2 \log n$,

 \[P(X_1 \geq k) \leq \binom{m}{k} p^k \leq \frac{m^k}{k!} \cdot \left(\frac{1}{n}\right)^k = \left(\frac{m}{n}\right)^k / k! = 1/k! \leq 1/2^k = 1/n^2 \]

- Same analysis applies to X_2, X_3, \ldots, i.e., the number of balls in bins 2, 3, \ldots. Hence, no bin has more than $k = 2 \log n$ balls in it with probability at least $1 - 1/n$.

6/11
Lemma

Let X be the number of heads observed when we toss m coins each with probability of heads equal to p. Then $\Pr[X \geq k] \leq \binom{m}{k} p^k$.

- Let $S_1, S_2, \ldots S_{\binom{m}{k}}$ be all subsets of $[m]$ with exactly k elements.

 $$P(A_{S_j}) = p^k$$

 where A_S is the event that for all $i \in S$, the ith coin toss is heads.

- Then $A_{S_1} \cup A_{S_2} \cup \ldots \cup A_{S_{\binom{m}{k}}}$ is the event you get k or more heads.

- Hence,

 $$P(k \text{ or more heads}) = P(A_{S_1} \cup A_{S_2} \cup \ldots \cup A_{S_{\binom{m}{k}}}) \leq \sum_{j=1}^{\binom{m}{k}} P(A_{S_j}) = \binom{m}{k} p^k$$
Outline

Balls and Bins and Birthdays and Coupons

Schwartz-Zippel
Checking Polynomial Multiplication via Schwartz-Zippel

Problem

Given three n variable polynomials P_1, P_2, P_3. Can you test if

$$P_1(x_1, \ldots, x_n) \times P_2(x_1, \ldots, x_n) = P_3(x_1, \ldots, x_n)$$

faster than multiplying the polynomials? Equivalently, is

$$Q(x_1, \ldots, x_n) = P_1(x_1, \ldots, x_n) \times P_2(x_1, \ldots, x_n) - P_3(x_1, \ldots, x_n)$$

zero for all x_1, \ldots, x_n?

Theorem (Schwartz-Zippel)

Let $Q(x_1, \ldots, x_n)$ be a non-zero multivariate polynomial of total degree d. Fix any finite set of values S and let r_1, \ldots, r_n be chosen independently and uniformly at random from S. Then,

$$\mathbb{P}[Q(r_1, \ldots, r_n) = 0] \leq d/|S|$$
Schwartz-Zippel Proof

- Induction on n: For $n = 1$, because Q has at most d roots,
 \[\mathbb{P}[Q(r_1) = 0] \leq d/|S| \]

- For induction step define Q_i for $0 \leq i \leq k$:
 \[Q(x_1, \ldots, x_n) = \sum_{i=0}^{k} x_1^i Q_i(x_2, \ldots, x_n) \]
 where k is maximum such that $Q_k(x_2, \ldots, x_n) \neq 0$

- Since total degree of Q_k is at most $d - k$,
 \[\mathbb{P}[Q_k(r_2, \ldots, r_n) = 0] \leq (d - k)/|S| \]

- Consider $q(x) = Q(x, r_2, \ldots, r_n)$,
 \[\mathbb{P}[q(r_1) = 0|Q_k(r_2, \ldots, r_n) \neq 0] \leq k/|S| \]

- Putting together gives $\mathbb{P}[Q(r_1, \ldots, r_n) = 0]$ at most
 \[\mathbb{P}[Q_k(r_2, \ldots, r_n) = 0] + \mathbb{P}[q(r_1) = 0|Q_k(r_2, \ldots, r_n) \neq 0] \leq d/|S| \]
 where we used $\mathbb{P}[A] = \mathbb{P}[A \cap B] + \mathbb{P}[A \cap B^c] \leq \mathbb{P}[B] + \mathbb{P}[A|B^c]$