CMPSCI 611: Advanced Algorithms
Lecture 15: Tail Inequalities

Andrew McGregor
Variance Refresher

- **Expectation:** \(\mathbb{E}[X] = \sum_r r \mathbb{P}[X = r] \)
- **Linearity of expectation:** \(\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \)
- **Variance random variable:** \(\mathbb{V}[X] = \sigma^2_X = \mathbb{E}[(X - \mathbb{E}[X])^2] \)
- **Linearity of variance if \(X \) and \(Y \) are independent:**
 \[
 \mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]
 \]
Examples of Random Variables

Example
Let X have the binomial distribution $Bin(n, p)$:

$$P[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$$

“How many heads do we see when we toss a coin with probability p of heads n times?” $E[X] = np$ and $V[X] = np(1 - p)$.

Example
Let X have the geometric distribution $Geom(p)$:

$$P[X = i] = (1 - p)^{i-1} p$$

“How many times do we toss a coin with probability p of heads until we see a heads.” $E[X] = 1/p$, $V[X] = (1 - p)/p^2$.
Outline

Markov and Chebyshev

Lazy Select
Theorem (Markov)

Let Y be a positive random variable and let $\mu = \mathbb{E}[Y]$ be strictly positive. Then, for $t > 0$,

$$\mathbb{P}[Y \geq t\mu] \leq 1/t.$$

Proof.

- $\mathbb{E}[Y] = \sum_r r \cdot \mathbb{P}[Y = r] \geq \sum_{r \geq t\mu} r \cdot \mathbb{P}[Y = r] \geq \mathbb{P}[Y \geq t\mu] \cdot t \cdot \mu$

- Therefore, $\mathbb{P}[Y \geq t\mu] \leq 1/t$.

\[\square\]
Theorem (Chebyshev)

Let X be a random variable with expectation μ and variance σ^2 that is strictly positive. Then for $t > 0$,

$$\mathbb{P}[|X - \mu| \geq t\sigma] \leq \frac{1}{t^2}.$$

Proof.

- Note that $\mathbb{P}[|X - \mu| \geq t\sigma] = \mathbb{P}[(X - \mu)^2 \geq t^2\sigma^2]$
- Let $Y = (X - \mu)^2$ and note $\mathbb{E}[Y] = \sigma^2$
- Use Markov’s inequality to show $\mathbb{P}[Y \geq t^2\mathbb{E}[Y]] \leq \frac{1}{t^2}$
Theorem

Let X_1, \ldots, X_n be independent boolean random variables such that $\mathbb{P}[X_i = 1] = p_i$. Then, for $X = \sum_i X_i$, $\mu = \mathbb{E}[X]$, and $\delta > 0$,

$$
\mathbb{P}[X > (1 + \delta)\mu] < \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^\mu
$$

Other versions: For $0 < \delta \leq 1$

$$
\mathbb{P}[X \geq (1 + \delta)\mu] \leq e^{-\delta^2 \mu/3}
$$

$$
\mathbb{P}[X \leq (1 - \delta)\mu] \leq e^{-\delta^2 \mu/2}
$$

Will prove Chernoff Bound next time...
Outline

Markov and Chebyshev

Lazy Select
Lazy Select

Let S be set of $n = 2k$ distinct values. Want to find k-th smallest value.

Algorithm

1. Add each element in S to a set R with probability $p = 1/n^{1/4}$.
2. Call this set R, Sort R and let
 \[a = \left(\frac{n^{3/4}}{2} - 5\sqrt{n} \right) \text{ smallest element in } R. \]
 \[b = \left(\frac{n^{3/4}}{2} + 5\sqrt{n} \right) \text{ smallest element in } R. \]
3. Construct $S' = \{ i \in S : a < y < b \}$ and let t be the number of values less or equal to a amongst S.
4. Sort S' and return $(k - t)$th smallest value in S'.