Dynamic Programming

Shortest Paths
Knapsack Warmup

Problem

- Input: \(n \) items each with value \(w_i \in \mathbb{N} \) and a capacity \(W \in \mathbb{N} \)
- Output: Subset \(S \) that maximizes \(\sum_{i \in S} w_i \) subject to \(\sum_{i \in S} w_i \leq W \)

Example

Consider input \(\{7, 5, 4\} \) and \(W = 10 \). Optimal is 9.
Try something like divide and conquer . . .

Definition
Let \(\text{knap}(i, j) \) be the optimal solution obtained by using only first \(i \) items and capacity \(j \) where \(\text{knap}(i, j) = -\infty \) for \(j < 0 \)

To compute \(\text{knap}(i, j) \):
- If \(i = 0 \): \(\text{knap}(i, j) = 0 \)
- Otherwise:
 - Compute \(\text{knap}(i - 1, j) \) and \(\text{knap}(i - 1, j - w_i) \)
 - \(\text{knap}(i, j) = \max(\text{knap}(i - 1, j), \text{knap}(i - 1, j - w_i) + w_i) \)

Claim
The above recursive algorithm will return \(\text{knap}(n, W) \) correctly.

But it’s very inefficient because evaluating both \(\text{knap}(i - 1, j) \) and \(\text{knap}(i - 1, j - w_i) \) requires a lot of duplication of work.
Dynamic Programming Table

Construct a \((n+1) \times (W+1)\) table \(K\) where \(K_{i,j} = \text{knap}(i,j)\):

- Fill in “0” for each entry of first row
- To fill in \(i\)-th row use entries of \((i-1)\)-th row:

\[
K_{i,j} = \begin{cases}
\max(K_{i-1,j}, K_{i-1,j-w_i} + w_i) & \text{if } j \geq w_i \\
K_{i-1,j} & \text{if } j < w_i
\end{cases}
\]

Claim

Running time is \(O(nW)\) and space required is \(O(W)\).

Easy to tweak algorithm to find \(S\) and not just \(\sum_{i \in S} w_i\)

Actually Knapsack is NP-complete, have we proved that \(P = NP\)?
When to use dynamic programming.

- **Optimal Substructure**: The solution to the problem can be found using solutions to smaller sub-problems.

- **Overlap of Sub-Problems**: By taking advantage of the fact that many identical sub-problems are created, a dynamic programming algorithm may be more efficient than a divide and conquer algorithm.
Outline

Dynamic Programming

Shortest Paths
Shortest Paths

Let \(G = (V, E) \) be a directed graph with weights \(w : E \to \mathbb{R}^+ \).

Definition
For path \(p = (v_1, \ldots, v_k) \) be a path, define

\[
w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).
\]

The *shortest path* between \(u \) and \(v \) is

\[
\delta(u, v) = \min \{ w(p) : p \text{ is a path from } u \text{ to } v \}
\]

if there is a path from \(u \) to \(v \) and \(\infty \) otherwise.
Floyd-Warshall Warm-Up

Problem: Find $\delta(u, v)$ for all $u, v \in V$.

- Define sub-problems by limiting the set of intermediate nodes
- Let $d_{ij}^{(k)} = \text{length of shortest path from } i \text{ to } j \text{ for which all }
 \text{intermediate vertices are in } \{v_1, \ldots, v_k\}$
- Easy: $d_{ij}^{(0)} = w(i, j)$ if $(i, j) \in E$ and $d_{ij}^{(0)} = \infty$ otherwise
- For $k \geq 1$:
 $$d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$$
Floyd-Warshall Algorithm

Algorithm

1. Let $d_{ij}^{(0)} = w(i, j)$ if $(i, j) \in E$ and $d_{ij}^{(0)} = \infty$ otherwise.

2. For $k = 1$ to n:

 2.1 For $i, j \in [n]$: let

 $$d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$$

3. Return $d_{ij}^{(n)}$

Running Time: $\Theta(n^3)$ where $n = |V|$