Outline

Polynomial Time Reductions

NP Completeness
Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- Input: Given graph $G = (V, E)$ and integer k.
- Question: Does G contain a clique of size k?
Problem 2: 3-SAT

► Input: A boolean formula \(\phi(x_1, \ldots, x_n) \) in \textit{conjunctive normal form}\footnote{This means the formula is a conjunction (AND) of clauses, each of which is a disjunction (OR) of literals.}, with \(m \) clauses and 3 literals per clause, e.g.,

\[
(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3)
\]

where \(\bar{x}_i \) is “not \(x_i \)”, \(\land \) is “and”, \(\lor \) is “or.” We call \(x_i \) and \(\bar{x}_i \) \textit{literals}.

► Question: Is there a setting of each \(x_i \) to TRUE or FALSE such that the formula is satisfied.
A Polynomial Time Reduction for 3-SAT to Clique

We’ll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

$$\phi = (l_{1,1} \lor l_{1,2} \lor l_{1,3}) \land (l_{2,1} \lor l_{2,2} \lor l_{2,3}) \land \ldots \land (l_{m,1} \lor l_{m,2} \lor l_{m,3})$$

in poly-time, we can construct $G_\phi = (V_\phi, E_\phi)$:

$$V_\phi = \{l_{i,j} : i \in [m], j \in [3]\}$$

$$E_\phi = \{(l_{i,j}, l_{k,l}) : i, k \in [m], j \in [3], i \neq k, l_{i,j} \neq \bar{l}_{k,l}\}$$

We’ll show ϕ is satisfiable iff G_ϕ has a clique of size m
φ is satisfiable iff G_ϕ has a clique of size m

Suppose ϕ is satisfiable:
1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes
3. $G_\phi[Y]$ is a clique because x_k and \bar{x}_k can’t both be in Y for any k

Suppose G_ϕ has a clique of size m:
1. Let Y be the clique of size m
2. For each clause:
 - Exactly one node l from i-th clause is in Y
 - Set $x_k = \text{TRUE}$ if $l = x_k$ and set $x_k = \text{FALSE}$ if $l = \bar{x}_k$
3. We can’t set x_k to be true and false because literals x_k and \bar{x}_k can’t both be in Y
Polynomial Time Reduction

Definition
Π is a decision problem if it only has a “yes” or “no” answer.

Definition
Given two decision problems Π₁, Π₂ we say Π₂ is polynomial time reducible to Π₁ iff there exists a polynomial time algorithm f that transforms any instance X of Π₂ to an instance f(X) of Π₁ such that:

(X is a “yes” instance of Π₂) ⇐⇒ (f(X) is a “yes” instance of Π₁)

We write Π₂ \leq_p Π₁ to denote “Π₂ is polynomial time reducible to Π₁”.

Some Examples:
- INDEPENDENT-SET \leq_p CLIQUE
- VERTEX-COVER \leq_p SET-COVER
- VERTEX-COVER \leq_p INDEPENDENT-SET
Outline

Polynomial Time Reductions

NP Completeness
P and NP Definitions

Definition (P)

\(\Pi \in P \) iff there exists a polynomial time algorithm \(A \) such that:

\[
(X \text{ is a "yes" instance of } \Pi) \iff (A(X) = "yes")
\]

Definition (NP)

\(\Pi \in NP \) iff there exists a polynomial time algorithm \(A \) such that:

\[
(X \text{ is a "yes" instance of } \Pi) \implies (\exists Y : |Y| = \text{poly}(|X|), A(X, Y) = "yes")
\]

\[
(X \text{ is a "no" instance of } \Pi) \implies (\nexists Y : |Y| = \text{poly}(|X|), A(X, Y) = "yes")
\]

We call \(Y \) a **witness**.
Example: Clique

- **Input:** Given graph $G = (V, E)$ and integer k.
- **Question:** Does G contain a clique of size k?

Lemma

Clique is in NP.

Proof.

1. Suppose the witness Y encodes a set of k nodes in V and $A(G, Y)$ checks if the induced graph on Y, $G[Y]$ is a clique.
2. A is a polynomial time algorithm.
3. If there exists a clique of size k, there exists Y of size k such that $A(G, Y)$ outputs “yes”
4. If there doesn’t exist a clique of size k, there doesn’t exist Y of size k such that $A(G, Y)$ outputs “yes”

Example for a problem that is not known to be in NP: Is a quantified boolean formula, e.g., $\forall x \exists y \exists z \; ((x \lor z) \land y)$, true?
NP-Completeness

Definition
A decision problem \(\Pi \) is NP-Hard iff for all \(\Pi' \in NP \), \(\Pi' \leq_P \Pi \).

Definition
A decision problem \(\Pi \) is NP-Complete iff it is both NP-Hard and in NP.

Remark 1: If \(\Pi \) is NP-Complete and \(\Pi \in P \) then \(P = NP \)

Remark 2: In 1971, Cook showed 3-SAT is NP-Complete. Because

\[\text{CLIQUE} \in NP \text{ and } 3\text{-SAT} \leq_P \text{CLIQUE} \]

we now know CLIQUE is NP-Complete.