CMPSCI 611: Advanced Algorithms
Lecture 21: Metric Traveling Salesperson

Andrew McGregor
Outline

Metric TSP 2-approx

Metric TSP 3/2 approximate
Metric Traveling Salesperson Problem

- **Input**: Weighted complete graph $G = (V, E)$ with positive weights such that for edges $e = (u, v)$, $e' = (v, w)$, and $e'' = (u, w)$

 \[w_e + w_{e'} \geq w_{e''} \]

- **Goal**: Find the tour (a path that visits every node exactly once and returns to starting point) of minimum total weight.
Metric TSP Approximation Algorithm

Algorithm
1. Compute minimum spanning tree T_{mst} of G
2. Consider a “pseudo-tour” that walks around T_{mst}
3. Create tour from pseudo-tour by skipping pre-visited nodes

Theorem
The algorithm is a 2-approximation.

Proof.
- Cost of pseudo-tour is twice cost of T_{mst}
- Cost of tour found is at most cost of pseudo-tour:

$$\text{cost(tour found)} \leq \text{cost(pseudo tour)} = 2 \cdot \text{cost}(T_{mst})$$

- Cost of T_{mst} is at most cost of optimal tour since removing an edge in an optimal tour gives a spanning tree:

$$\text{cost}(T_{mst}) \leq \text{cost(optimal tour)}$$
Outline

Metric TSP 2-approx

Metric TSP 3/2 approximate
Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has even degree.
Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Let D be the nodes in T_{mst} that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{\text{mst}} + M$
5. Transform into tour by short-cutting repeated vertices.
Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour
 \[
 \text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost}(T_{\text{mst}}) + \text{cost}(M)
 \]

- As before, \(\text{cost}(T_{\text{mst}}) \leq \text{cost(optimal tour)} \)

- Cost of \(M \) is at most half cost of optimal tour
 \[
 \text{cost}(M) \leq \frac{1}{2} \text{cost(optimal tour)}
 \]

Let \(D = \{d_1, \ldots, d_k\} \) be ordered according to optimal tour.

\[
\text{cost(optimal tour)} \geq \sum_{i=1}^{k-1} w_{d_i,d_{i+1}} + w_{d_k,d_1} = \left(\sum_{i=2}^{k} w_{d_i,d_{i+1}} \right) + \left(w_{d_2,d_3} + w_{d_4,d_5} + \cdots + w_{d_k,d_1} \right)
\]