CMPSCI 611: Advanced Algorithms
Lecture 20: Weighted Set Cover and TSP

Andrew McGregor
Outline

Approximation Algorithms Recap

Weighted Set-Cover

Metric TSP 2-approx

Metric TSP 3/2 approximate
Approximation Ratios

Definition

The *performance ratio* of an algorithm is

\[\max_{x: |x| = n} \frac{C_{\text{alg}}(x)}{C_{\text{opt}}(x)} \]

for a minimization problem

\[\max_{x: |x| = n} \frac{C_{\text{opt}}(x)}{C_{\text{alg}}(x)} \]

for a maximization problem

where \(C_{\text{alg}}(x) \) is the value of the algorithm solution on input \(x \) and \(C_{\text{opt}}(x) \) is the value of the optimal solution on input \(x \).
Outline

Approximation Algorithms Recap

Weighted Set-Cover

Metric TSP 2-approx

Metric TSP 3/2 approximate
Set-Cover

Problem:

- **Input**: A collection $C = \{S_1, S_2, \ldots, S_m\}$ of subsets of $U = \bigcup_{S \in C} S$ and weights $w : C \rightarrow \mathbb{R}^+$
- **Output**: Find $C' \subset C$ such that

$$U = \bigcup_{S \in C'} S$$

that minimizes $\sum_{S \in C'} w_S$.

Greedy Set-Cover Algorithm

Algorithm

1. Let $R \leftarrow U$, $C' \leftarrow \emptyset$
2. While $R \neq \emptyset$:
 2.1 Pick $S \in \{S_1, \ldots, S_m\}$ be the set minimizing $w_S/|S \cap R|$
 2.2 $R \leftarrow R - S$ and $C' \leftarrow C' \cup \{S\}$
3. Return C'

Theorem

Approx ratio is $\frac{1}{d^*} + \frac{1}{d^*-1} + \ldots + \frac{1}{1} \approx \ln d^*$ where $d^* = \max_i |S_i|$

Definition

When S is chosen, say $e \in S \cap R$ is covered at cost $c_e = \frac{w_S}{|S \cap R|}$. Note

$$
\sum_{S \in C'} w_S = \sum_{e \in U} c_e.
$$

Ex: If $S_1 = \{1, 2\}$, $S_2 = \{1, 2, 3\}$, $S_3 = \{3, 4\}$ where $w_{S_1} = 4$, $w_{S_2} = 7$, $w_{S_3} = 20$ then $c_1 = c_2 = 2$, $c_3 = 7$, and $c_4 = 20$.
Analysis 1/2

Claim

For all $S \in C$, $\sum_{e \in S} c_e \leq H(|S|) \cdot w_S$. Note that S may or may not be one of the sets chosen by the greedy algorithm.

Proof.

- Suppose $S = \{e_1, \ldots, e_d\}$ be ordered according to order in which elements are covered by the greedy algorithm (break ties arbitrarily).
- Suppose S' is chosen to cover e_j. Because algorithm is greedy,

$$c_{e_j} = \frac{w_{S'}}{|S' \cap R|} \leq \frac{w_S}{|S \cap R|}$$

- Before e_j was covered e_{j+1}, \ldots, e_d were also uncovered,

$$|S \cap R| \geq (d - j + 1)$$

- Therefore

$$\sum_{j=1}^{d} c_{e_j} \leq \sum_{j=1}^{d} \frac{w_S}{d - j + 1/15} = \frac{w_S}{d} + \frac{w_S}{d - 1} + \ldots + \frac{w_S}{1}$$
Let the optimal solution \(C_{\text{OPT}} \) have cost \(w_{\text{OPT}} \).

Claim: For each \(S \in C_{\text{OPT}} \),

\[
ws \geq \sum_{e \in S} \frac{c_e}{H(|S|)}
\]

where \(H(|S|) = \frac{1}{|S|} + \frac{1}{|S|-1} + \ldots + \frac{1}{1} \).

Then,

\[
w_{\text{OPT}} \geq \sum_{S \in C_{\text{OPT}}} \sum_{e \in S} \frac{c_e}{H(|S|)} \geq \frac{1}{H(d^{*})} \sum_{S \in C_{\text{OPT}}} \sum_{e \in S} c_e \geq \frac{1}{H(d^{*})} \sum_{e \in U} c_e
\]

But \(\sum_{e \in U} c_e = \sum_{S \in C'} ws \) and so \(w_{\text{OPT}} \geq \frac{1}{H(d^{*})} \sum_{S \in C'} ws \)
Outline

Approximation Algorithms Recap

Weighted Set-Cover

Metric TSP 2-approx

Metric TSP 3/2 approximate
Metric Traveling Salesperson Problem

- **Input:** Weighted complete graph $G = (V, E)$ with positive weights such that for edges $e = (u, v)$, $e' = (v, w)$, and $e'' = (u, w)$

 $$w_e + w_{e'} \geq w_{e''}$$

- **Goal:** Find the tour (a path that visits every node exactly once and returns to starting point) of minimum total weight.
Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Consider a “pseudo-tour” that walks around T_{mst}
3. Create tour from pseudo-tour by skipping pre-visited nodes

Theorem
The algorithm is a 2-approximation.

Proof.
- Cost of pseudo-tour is twice cost of T_{mst}
- Cost of tour found is at most cost of pseudo-tour:
 \[
 \text{cost(tour found)} \leq \text{cost(pseudo tour)} = 2 \cdot \text{cost}(T_{mst})
 \]
- Cost of T_{mst} is at most cost of optimal tour since removing an edge in an optimal tour gives a spanning tree:
 \[
 \text{cost}(T_{mst}) \leq \text{cost(optimal tour)}
 \]
Outline

Approximation Algorithms Recap

Weighted Set-Cover

Metric TSP 2-approx

Metric TSP 3/2 approximate
Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has even degree.
Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Let D be the nodes in T_{mst} that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{\text{mst}} + M$
5. Transform into tour by short-cutting repeated vertices.
Analysis

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.
- Cost of tour found is at most cost of Euler tour
 \[\text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost}(T_{\text{mst}}) + \text{cost}(M) \]
- As before, \(\text{cost}(T_{\text{mst}}) \leq \text{cost(optimal tour)} \)
- Cost of \(M \) is at most half cost of optimal tour
 \[\text{cost}(M) \leq \frac{\text{cost(optimal tour)}}{2} \]

Let \(D = \{d_1, \ldots, d_k\} \) be ordered according to optimal tour.

\[\text{cost(optimal tour)} \geq w_{d_1,d_2} + w_{d_2,d_3} + \ldots + w_{d_k,d_1} \]
\[= (w_{d_1,d_2} + w_{d_3,d_4} + \ldots w_{d_{k-1},d_k}) + \\
(w_{d_2,d_3} + w_{d_4,d_5} + \ldots w_{d_k,d_1}) \]