CMPSCI 611: Advanced Algorithms
Lecture 10: Seidel’s Algorithm

Andrew McGregor
Seidel’s Algorithm

Problem: For an undirected, unweighted graph G, compute all distances.

Seidel’s Algorithm is based on matrix multiplication and runs in time

$$O(\mu(n) \log n)$$

where $\mu(n)$ is the time to multiply two $n \times n$ matrices together. Recall

$$n^2 \leq \mu(n) \leq n^{2.3727}$$

Definition
Let M_G be the adjacency matrix of $G = (V, E)$, i.e., an $n \times n$ binary matrix where

$$M_G(i, j) = 1 \text{ iff } (i, j) \in E$$
The G_2 graph

Definition
Given a undirected, unweighted graph $G = (V, E)$, define $G_2 = (V, E')$ where $(i, j) \in E'$ iff $\delta_G(i, j) \leq 2$.

Claim
If $M_{G_2}(i, j) = 1$ then $\delta_G(i, j) \leq 2$ and $\delta_G(i, j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } M_G(i, j) = 1 \\ 2 & \text{otherwise} \end{cases}$

Lemma
$$\delta_G(i, j) = 2\delta_{G_2}(i, j) - P_G(i, j)$$
where $P_G(i, j) = 1$ if $\delta_G(i, j)$ is odd and $P_G(i, j) = 0$ otherwise.

Proof.
Any path of length $2k$ in G gives rise to a path of length k in G_2. Any path of length in $2k + 1$ in G gives rise to a path of length $k + 1$ in G_2. \qed
Seidel’s Algorithm

Algorithm (Seidel(M_G))

1. compute M_{G_2}
2. if $\forall i \neq j : M_{G_2}(i, j) = 1$, return

$$D_G[i, j] = \begin{cases}
0 & \text{if } i = j \\
1 & \text{if } M_G(i, j) = 1 \\
2 & \text{otherwise}
\end{cases}$$

3. else:
 3.1 compute $D_{G_2} = \text{Seidel}(M_{G_2})$
 3.2 compute P_G
 3.3 return $D_G = 2D_{G_2} - P_G$

Mystery Steps: How can we compute M_{G_2} and P_G quickly?
The diameter of a graph G is the “longest shortest path”,

$$\text{diam}(G) = \max_{i,j} \delta_G(i,j)$$

Note that if $\text{diam}(G) \geq 3$:

$$\text{diam}(G_2) \leq \frac{\text{diam}(G)}{2} + \frac{1}{2} \leq \frac{2\text{diam}(G)}{3}$$

After recursing t steps, the diameter is at most

$$(\frac{2}{3})^t \text{diam}(G)$$

and so after $\log(n/2)/\log(3/2)$ steps, the diameter is at most 2.
Computing M_{G^2} via $M_G \times M_G$

Lemma

$$M_{G^2}(i,j) = \begin{cases}
1 & \text{if } i \neq j \text{ and } (M_G(i,j) = 1 \text{ or } M^2_G(i,j) > 0) \\
0 & \text{otherwise}
\end{cases}$$

Proof.

$M^2_G(i,j) = \sum_k M_G(i,k)M_G(k,j) = \# \text{ of length 2 paths from } i \text{ to } j.$

Can compute M_{G^2} in $O(\mu(n))$ time.
Computing P_G via $D_{G_2} \times M_G$

P_G can be computed in $O(\mu(n))$ time.

Lemma

Let $X = D_{G_2}M_G$ where $D_{G_2}(i,j) = \delta_{G_2}(i,j)$. Then,

$$P_G(i,j) = 0 \iff \frac{X(i,j)}{\text{degree}_G(j)} \geq \delta_{G_2}(i,j)$$

where $\text{degree}_G(j)$ is the number of edges incident to node j in graph G.

Note that,

$$\frac{X(i,j)}{\text{degree}_G(j)} = \sum_k \frac{\delta_{G_2}(i,k)M_G(k,j)}{\text{degree}_G(j)} = \sum_{k \in \text{Adj}_G(j)} \frac{\delta_{G_2}(i,k)}{\text{degree}_G(j)}$$

Fix i and let $d_k = \delta_{G_2}(i,k)$, then we need to show:

$$P_G(i,j) = 0 \iff (\text{average of } d_k \text{ over neighbors } k \text{ of } j) \geq d_j$$
Proof of Lemma

- If \(P_G(i, j) = 0 \), then \(\delta_G(i, j) = 2d_j \)
 - For all neighbors \(k \) note that \(\delta_G(i, k) \) is either \(2d_j - 1, 2d_j, \) or \(2d_j + 1 \)
 - Hence, each \(d_k \) is either \(d_j \) or \(d_j + 1 \)
 - Therefore average \(d_k \) values is at least \(d_j \)

- If \(P_G(i, j) = 1 \), then \(\delta_G(i, j) = 2d_j - 1 \)
 - For all neighbors \(k \) note that \(\delta_G(i, k) \) is either \(2d_j - 2, 2d_j - 1, \) or \(2d_j \)
 - Hence, each \(d_k \) is either \(d_j - 1 \) or \(d_j \)
 - At least one neighbor has \(\delta_G(i, k) = 2d_j - 2 \) and \(d_k = d_j - 1 \)
 - Therefore average \(d_k \) values is strictly less than \(d_j \)
Total Running Time

Algorithm (Seidel(M_G))

1. compute M_{G_2}
2. if $\forall i \neq j : M_{G_2}(i, j) = 1$, return

$$D_G(i, j) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } M_G(i, j) = 1 \\
2 & \text{if otherwise}
\end{cases}$$

3. else:
 3.1 compute $D_{G_2} = \text{Seidel}(M_{G_2})$
 3.2 compute P_G
 3.3 return $D_G = 2D_{G_2} - P_G$

Running Time: $O(\mu(n) \log n)$ since depth of recursion is $O(\log n)$ and each iteration takes $O(\mu(n))$ time.