Shortest Paths

Let $G = (V, E)$ be a directed graph with weights $w : E \rightarrow \mathbb{R}^+$.

Definition
For path $p = (v_1, \ldots, v_k)$ be a path, define

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

The *shortest path* between u and v is

$$\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}$$

if there is a path from u to v and ∞ otherwise.
Dijkstra’s Warm-Up

Single-Source Problem: Given $s \in V$, find $\delta(s, v)$ for all $v \in V$.

Dijkstra’s algorithm solves problem if all edges are non-negative:

- Maintains array $(d[v] : v \in V)$ where $d[v]$ will always be ∞ or the length of some path from s to v, not necessarily the shortest. Hence,

\[d[v] \geq \delta(s, v) \]

- Maintains a set of processed vertices R. We’ll prove that for all $v \in R$:

\[d[v] = \delta(s, v) \]
Dijkstra’s Algorithm

Algorithm

1. \(d[s] = 0\) and for \(s \neq v\):

\[
d[v] = w(s, v) \text{ if } (s, v) \in E \text{ and } \infty \text{ otherwise}
\]

2. \(R \leftarrow \{s\}\)

3. While \(|R| < |V|\):
 3.1 \(u \leftarrow \arg\min_{v \notin R} d[v]\)
 3.2 \(R \leftarrow R + u\)
 3.3 For each \(v \notin R\) that is a neighbor of \(u\):

\[
d[v] = \min(d[u] + w(u, v), d[v])
\]

Running Time: \(O(|V|^2)\) for simple implementation but can be improved.
Correctness of Algorithm

The correctness of the algorithm follows because a) \(d[v] \) never increases, b) \(d[v] \geq \delta(s, u) \) at all times, and c) appealing to the following lemma:

Lemma

When \(u \) is added to \(R \), \(d[u] = \delta(s, u) \)
When u gets added to R, $d[u]$ is correct

Let $d_u[v]$ be value of $d[v]$ just before u is chosen as minimum.

Lemma

For all u, $d_u[u] = \delta(s, u)$

- **By contradiction:** Let u be first vertex put in R with $d_u[u] > \delta(s, u)$
- Consider a shortest path from s to u. Let y be first vertex not in R. Note that y may or may not be u.
- **Claim:** $d_u[y] = \delta(s, y)$
 - Let x be the predecessor of y on the path. Note that $x \in R$.
 - $d_x[x] = \delta(s, x)$ by assumption that u is first bad vertex.
 - After iteration where x is added to R: $d[y] \leq \delta(s, x) + w(x, y)$
 - $\delta(s, x) + w(x, y) = \delta(s, y)$ since path included shortest path to y
- Since y lies on shortest path to u: $\delta(s, y) \leq \delta(s, u)$
- Putting above two lines together:
 $$d_u[y] = \delta(s, y) \leq \delta(s, u) < d_u[u]$$
- **If** $y \neq u$: Contradiction because u was the next minimum and so
 $$d_u[u] \leq d_u[y]$$
- **If** $y = u$: Contradiction because we deduced above $d_u[y] = \delta(s, y)$