Outline

Summary of Matroid Results
The Problem

Definition
A subset system $S = (E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets of E such that if $A \in \mathcal{I}$ and $B \subset A$ then $B \in \mathcal{I}$.

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

1. $A = \emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$
Matroid Definition and Theorem

Definition
Subset system \((E, \mathcal{I})\) has the **exchange property** if

\[
\forall A, B \in \mathcal{I} : (|A| < |B|) \implies (\exists e \in B - A \text{ such that } A + e \in \mathcal{I})
\]

Theorem
Given a subset system \((E, \mathcal{I})\), the following statements are equivalent:

1. Greedy algorithm returns optimal solution for any weight function.
2. The subset system obeys the exchange property.
3. The subset system obeys the cardinality property.

where we say \(A \in \mathcal{I}\) is a maximal subset of \(E'\) if \(A \subseteq E'\) and there doesn't exist \(e \in E'\) such that \(A + e \in \mathcal{I}\).
Matroid Definition and Theorem

Definition
Subset system \((E, \mathcal{I})\) has the exchange property if

\[
\forall A, B \in \mathcal{I} : (|A| < |B|) \implies (\exists e \in B - A \text{ such that } A + e \in \mathcal{I})
\]

Definition
A subset system \((E, \mathcal{I})\) has the cardinality property if

\[
\forall E' \subseteq E : (A, B \in \mathcal{I} \text{ maximal subsets of } E') \implies (|A| = |B|)
\]

where we say \(A \in \mathcal{I}\) is a maximal subset of \(E'\) if \(A \subseteq E'\) and there doesn’t exist \(e \in E'\) such that \(A + e \in \mathcal{I}\).
Matroid Definition and Theorem

Definition
Subset system \((E, \mathcal{I}) \) has the **exchange property** if

\[
\forall A, B \in \mathcal{I} : (|A| < |B|) \implies (\exists e \in B - A \text{ such that } A + e \in \mathcal{I})
\]

Definition
A subset system \((E, \mathcal{I}) \) has the **cardinality property** if

\[
\forall E' \subseteq E : (A, B \in \mathcal{I} \text{ maximal subsets of } E') \implies (|A| = |B|)
\]

where we say \(A \in \mathcal{I} \) is a **maximal subset of** \(E' \) if \(A \subseteq E' \) and there doesn’t exist \(e \in E' \) such that \(A + e \in \mathcal{I} \).

Theorem
Given a subset system \((E, \mathcal{I}) \), the following statements are equivalent:

1. Greedy algorithm returns optimal solution for any weight function.
2. The subset system obeys the exchange property.
3. The subset system obeys the cardinality property.
Suppose A, B are maximal subsets of $E' \subseteq E$. Need to show $|A| = |B|$
Exchange Property implies Cardinality Property

- Suppose A, B are maximal subsets of $E' \subseteq E$. Need to show $|A| = |B|$
- If $|B| > |A|$, the exchange property implies

$$\exists \ e \in B - A \text{ such that } A + e \in \mathcal{I}$$
Exchange Property implies Cardinality Property

- Suppose A, B are maximal subsets of $E' \subseteq E$. Need to show $|A| = |B|$
- If $|B| > |A|$, the exchange property implies
 \[\exists e \in B - A \text{ such that } A + e \in \mathcal{I} \]
- Note that $A + e$ would still be in E' since $e \in B \subseteq E'$.
Exchange Property implies Cardinality Property

- Suppose A, B are maximal subsets of $E' \subseteq E$. Need to show $|A| = |B|$

- If $|B| > |A|$, the exchange property implies

 $$\exists \ e \in B - A \text{ such that } A + e \in I$$

- Note that $A + e$ would still be in E' since $e \in B \subseteq E'$.

- Thus A was not maximal in E'. Contradiction!
Cardinality Property implies Exchange Property

- Suffices to show that \((E, \mathcal{I})\) not a matroid implies there exists \(E'\) and \(A, B \in \mathcal{I}\) such that \(|A| \neq |B|\) and \(A, B\) are maximal in \(E'\)
Cardinality Property implies Exchange Property

- Suffices to show that \((E, \mathcal{I})\) not a matroid implies there exists \(E'\) and \(A, B \in \mathcal{I}\) such that \(|A| \neq |B|\) and \(A, B\) are maximal in \(E'\)
- \((E, \mathcal{I})\) not a matroid implies that

\[
\exists A, C \in \mathcal{I} \text{ such that } |A| < |C| \text{ and } \not\exists e \in C - A \text{ with } A + e \in \mathcal{I}
\]
Cardinality Property implies Exchange Property

- Suffices to show that \((E, \mathcal{I})\) not a matroid implies there exists \(E'\) and \(A, B \in \mathcal{I}\) such that \(|A| \neq |B|\) and \(A, B\) are maximal in \(E'\).

- \((E, \mathcal{I})\) not a matroid implies that

 \[
 \exists A, C \in \mathcal{I} \text{ such that } |A| < |C| \text{ and } \not\exists \; e \in C - A \text{ with } A + e \in \mathcal{I}
 \]

- Define \(E' = A \cup C\) and note that \(A\) is maximal in \(E'\).
Cardinality Property implies Exchange Property

- Suffices to show that \((E, I)\) not a matroid implies there exists \(E'\) and \(A, B \in I\) such that \(|A| \neq |B|\) and \(A, B\) are maximal in \(E'\)

- \((E, I)\) not a matroid implies that

 \[\exists A, C \in I \text{ such that } |A| < |C| \text{ and } \nexists e \in C - A \text{ with } A + e \in I\]

- Define \(E' = A \cup C\) and note that \(A\) is maximal in \(E'\).

- There exists \(B \in I\) such that \(C \subseteq B\) and \(B\) is maximal in \(E'\).
Cardinality Property implies Exchange Property

- Suffices to show that (E, I) not a matroid implies there exists E' and $A, B \in I$ such that $|A| \neq |B|$ and A, B are maximal in E'.
- (E, I) not a matroid implies that
 \[\exists A, C \in I \text{ such that } |A| < |C| \text{ and } \forall e \in C - A \text{ with } A + e \in I \]
- Define $E' = A \cup C$ and note that A is maximal in E'.
- There exists $B \in I$ such that $C \subseteq B$ and B is maximal in E'.
- But $|B| \geq |A| + 1$ as required.
Example 1

Theorem

The Maximum Weight Forest (MWF) subset system is a matroid.
Example 1

Theorem

The Maximum Weight Forest (MWF) subset system is a matroid.

Proof.

1. Pick an arbitrary subset of edges $E' \subseteq E$.
2. Let n_1, \ldots, n_k be the number of nodes in the connected components.
Example 1

Theorem

The Maximum Weight Forest (MWF) subset system is a matroid.

Proof.

- Pick an arbitrary subset of edges $E' \subseteq E$.
- Let n_1, \ldots, n_k be the number of nodes in the connected components.
- Any maximal acyclic subset of E' has size

\[(n_1 - 1) + (n_2 - 1) + \ldots + (n_k - 1) = n - k\]

because a maximal acyclic subgraph of a connected graph on n_i nodes is a tree and has $n_i - 1$ edges.
Example 1

Theorem

The Maximum Weight Forest (MWF) subset system is a matroid.

Proof.

▶ Pick an arbitrary subset of edges $E' \subseteq E$.
▶ Let n_1, \ldots, n_k be the number of nodes in the connected components.
▶ Any maximal acyclic subset of E' has size

$$(n_1 - 1) + (n_2 - 1) + \ldots + (n_k - 1) = n - k$$

because a maximal acyclic subgraph of a connected graph on n_i nodes is a tree and has $n_i - 1$ edges.
▶ Cardinality Theorem implies that it’s a matroid.
Example 2

Theorem

Let E be a set of directed edges and \mathcal{I} be subsets such that no two edges in the same subset point to same node. This is a matroid.

Proof.

For any $E' \subseteq E$, the number of edges in a maximal subset of E' is equal to the number of vertices pointed to in E'. The Cardinality Theorem implies that it's a matroid.
Example 2

Theorem

Let E be a set of directed edges and I be subsets such that no two edges in the same subset point to same node. This is a matroid.

Proof.

- For any $E' \subseteq E$, the number of edges in a maximal subset of E' is equal to the number of vertices pointed to in E'.
Theorem

Let E be a set of directed edges and I be subsets such that no two edges in the same subset point to the same node. This is a matroid.

Proof.

- For any $E' \subseteq E$, the number of edges in a maximal subset of E' is equal to the number of vertices pointed to in E'.
- Cardinality Theorem implies that it's a matroid.