CMPSCI 611: Advanced Algorithms
Lecture 4: Greedy Algorithms and Matroids

Andrew McGregor
Greedy Algorithms Overview

“An algorithm that finds a solution by adding elements one by one, where each element that is added is the best current choice without regard to the future consequences of this choice.”

- Minimum Spanning Tree and Kruskal’s algorithm
- Matroids and Subset Systems
- Bipartite Matching and Intersections of Matroids
- Union-Find Data Structure
Minimum Spanning Tree and Kruskal’s Algorithm

Problem: Given an undirected, connected graph \((V, E)\) with edge weights find the min-weight subset \(E' \subset E\) such that the graph \((V, E')\) is acyclic and connected, i.e., a min-weight spanning tree (MST).

Throughout this class we’ll assume all edge weights are distinct although everything generalizes to when some weights are the same.

Algorithm (Kruskal)

1. *Sort edges by increasing weight*
2. \(F = \emptyset\)
3. **Until** \(F\) is a spanning tree of \(G\)

 3.1 *Get the next edge* \(e\)

 3.2 *If* \(F + e\) is acyclic *then* \(F = F + e\)

The algorithm produces a tree because a) it never completes a cycle so the end result is acyclic and b) for any edge \((u, v)\) in a tree of the original graph, either \((u, v)\) is added or there is a path in \(F\) between \(u\) and \(v\).
Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each $v \in V$ that indicates which connected component it belongs to.

- **Sorting:** $O(|E| \log |E|)$
- **Checking if acyclic:** $|E|$ checks and each is $O(1)$ time.
- **Adding e to F:** Updating array takes $O(|V|)$ time and array is updated exactly $|V| - 1$ times.

Total Running Time: $O(|E| \log |E| + |V|^2)$

Will make this $O(|E| \log |E|)$ later via the union-find data structure
Proof of Correctness: Part 1

Cut Lemma: Let $S \subset V$ and let $e = (u, v)$ be the lightest edge such that $u \in S$ and $v \notin S$. The MST contains edge e.

Proof:

- Suppose there exists a minimum spanning tree T that doesn’t include e. We’ll construct a different spanning tree T' such that $w(T') < w(T)$ and hence T can’t be the MST.

- Since T is a spanning tree, there’s a $u \rightsquigarrow v$ path P in T. Since the path starts in S and ends up outside S, there must be an edge $e' = (u', v')$ on this path where $u' \in S$, $v' \notin S$.

- Let $T' = T - \{e'\} + \{e\}$. This is still spanning tree, since any path in T that needed e' can be routed via e instead. But since e was the lightest edge between S and $V \setminus S$,

\[
w(T') = w(T) - w(e') + w(e) < w(T) - w(e') + w(e') = w(T)
\]

\[5/7\]
Proof of Correctness: Part 2

Kruskal’s Algorithm: Sort the edges by increasing weight and keep on add the next edge that doesn’t complete a cycle.

Proof of Correctness:

- Suppose $e = (u, v)$ is the next edge added.
- Let S be the set of nodes that can be reached from u before e was added. Note that $v \notin S$ since otherwise adding e would have completed a cycle.
- No other edge between S and $V \setminus S$ has been encountered before since if it had it would have been added since it doesn’t complete a cycle. Hence e is the lightest edge between S and $V \setminus S$. Therefore, the cut lemma implies e must be in the MST.
A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

- Sort the edges by increasing weight.
- Let \(S = \{s\} \).
- While \(S \neq V \): Add next edge \((u, v)\) where \(u \in S \), \(v \notin S \) and add \(v \) to \(S \).

Proof of Correctness:

- Let \(S \) be the set of nodes in the tree constructed so far.
- The next edge added to the tree is the lightest edge between \(S \) and \(V \setminus S \). Hence, the cut lemma implies \(e \) must be in the MST.