Outline

Metric TSP 2-approx

Metric TSP 3/2 approximate

Weighted Set-Cover
Metric Traveling Salesperson Problem

- **Input:** Weighted complete graph \(G = (V, E) \) and weights \(w : E \to \mathbb{R}^+ \) such that for any edges \(e = (u, v), e' = (v, w), e'' = (u, w) \)
 \[
 w_e + w_{e'} \geq w_{e''}
 \]

- **Goal:** Find the tour (a path that visits every node exactly once and returns to starting point) of minimum weight.
Metric TSP Approximation Algorithm

Algorithm
1. Compute minimum spanning tree T_{mst} of G
2. Consider a “pseudo-tour” that walks around T_{mst}
3. Create tour from pseudo-tour by skipping pre-visited nodes

Theorem
The algorithm is a 2-approximation.

Proof.
- Cost of pseudo-tour is twice cost of T_{mst}
- Cost of tour found is at most cost of pseudo-tour
 \[
 \text{cost(tour found)} \leq \text{cost(pseudo tour)} = 2 \cdot \text{cost}(T_{mst})
 \]
- Cost of T_{mst} is at most cost of optimal tour
 \[
 \text{cost}(T_{mst}) \leq \text{cost(optimal tour)}
 \]
Outline

Metric TSP 2-approx

Metric TSP 3/2 approximate

Weighted Set-Cover
Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has even degree.
Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Let D be the nodes in T_{mst} that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{mst} + M$
5. Transform into tour by short-cutting repeated vertices.
Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

\[
\text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost}(T_{mst}) + \text{cost}(M)
\]

- As before, \(\text{cost}(T_{mst}) \leq \text{cost(optimal tour)}\)

- Cost of \(M\) is at most half cost of optimal tour

\[
\text{cost}(M) \leq \frac{\text{cost(optimal tour)}}{2}
\]

Let \(D = \{d_1, \ldots, d_k\}\) be ordered according to optimal tour.

\[
\text{cost(optimal tour)} \geq w_{d_1,d_2} + w_{d_2,d_3} + \ldots + w_{d_k,d_1} = (w_{d_1,d_2} + w_{d_3,d_4} + \ldots w_{d_{k-1},d_k}) + (w_{d_2,d_3} + w_{d_4,d_5} + \ldots w_{d_k,d_1})
\]
Outline

Metric TSP 2-approx

Metric TSP 3/2 approximate

Weighted Set-Cover
Set-Cover

Problem:
- Input: A collection $C = \{S_1, S_2, \ldots, S_m\}$ of subsets of $U = \bigcup_{S \in C} S$ and weights $w : C \rightarrow \mathbb{R}^+$
- Output: Find $C' \subset C$ such that

$$U = \bigcup_{S \in C'} S$$

that minimizes $\sum_{S \in C'} w_S$.

Theorem

Set-Cover is NP-complete (even when all weights are equal.)
Greedy Set-Cover Algorithm

Algorithm

1. Let $R \leftarrow U$, $C' \leftarrow \emptyset$

2. While $R \neq \emptyset$:
 1. Pick $S \in \{S_1, \ldots, S_m\}$ be the set minimizing $w_S / |S \cap R|$.
 2. $R \leftarrow R - S$
 3. $C' \leftarrow C' \cup \{S\}$

3. Return C'

Theorem

The algorithm has approx ratio $H(d^*) = O(\ln d^*)$ where $d^* = \max_i |S_i|$.

Definition

When S is chosen, say $e \in S \cap R$ is covered at cost $c_e = w_S / |S \cap R|$. Note that,

$$\sum_{S \in C'} w_S = \sum_{e \in U} c_e$$
Let the optimal solution C_{OPT} have cost w_{OPT}.

Claim: For each $S \in C_{\text{OPT}}$, $w_S \geq \sum_{e \in S} \frac{c_e}{H(|S|)}$

Then,

\[
w_{\text{OPT}} \geq \sum_{S \in C_{\text{OPT}}} \sum_{e \in S} \frac{c_e}{H(|S|)} \geq \frac{1}{H(d^*)} \sum_{S \in C_{\text{OPT}}} \sum_{e \in S} c_e \geq \frac{1}{H(d^*)} \sum_{e \in U} c_e
\]

But $\sum_{e \in U} c_e = \sum_{S \in C'} w_S$ and so $w_{\text{OPT}} \geq \frac{1}{H(d^*)} \sum_{S \in C'} w_S$
Analysis 2/2

Claim
For all $S \in C$, $\sum_{e \in S} c_e \leq H(|S|) \cdot w_S$.

Proof.

- Suppose $S = \{e_1, \ldots, e_d\}$ be ordered according to order in which elements are covered (ties broken arbitrarily).
- Suppose S' is chosen to cover e_j. Because algorithm is greedy,

\[
c_{e_j} = \frac{w_{S'}}{|S' \cap R|} \leq \frac{w_S}{|S \cap R|}
\]

- Before e_j was covered e_{j+1}, \ldots, e_d were also uncovered,

\[
|S \cap R| \geq (d - j + 1)
\]

- Therefore

\[
\sum_{j=1}^{d} c_{e_j} \leq \sum_{j=1}^{d} \frac{w_S}{d - j + 1} = \frac{w_S}{d} + \frac{w_S}{d - 1} + \cdots + \frac{w_S}{1}
\]