Approximation Ratios

Definition
The performance ratio of an algorithm is

\[
\max_{x:|x|=n} \frac{C_{\text{alg}}(x)}{C_{\text{opt}}(x)} \quad \text{for a minimization problem}
\]

\[
\max_{x:|x|=n} \frac{C_{\text{opt}}(x)}{C_{\text{alg}}(x)} \quad \text{for a maximization problem}
\]

where \(C_{\text{alg}}(x) \) is the value of the algorithm solution on input \(x \) and \(C_{\text{opt}}(x) \) is the value of the optimal solution on input \(x \).
Outline

Approximation Algorithms

Set-Cover

Polynomial Time Reductions
Set-Cover

Problem:

- Input: A collection $C = \{S_1, S_2, \ldots, S_m\}$ of subsets of $\{1, 2, \ldots, n\}$
- Output: Find $C' \subset C$ such that

$$\bigcup_{S \in C'} S = \{1, 2, \ldots, n\}$$

that minimizes $|C'|$.
Approximation Algorithm for Set Cover

Algorithm

1. $C' = \emptyset$.
2. Repeat until all elements are covered:
 2.1 Let S be the set that covers the most new elements: $C' \leftarrow C' \cup \{S\}$.

Theorem

The algorithm is a $\ln n$-approximation and runs in polynomial time.
Suppose it is possible to cover all elements with k. Whenever you haven’t covered all the elements, there’s a set that covers at least $1/k$ fraction of the uncovered elements.

After t sets have been chosen the number of uncovered elements is

$$n(1 - 1/k)^t < ne^{-t/k}$$

For $t = k \ln n$ this is less than 1, i.e., all elements have been covered.
Outline

Approximation Algorithms

Set-Cover

Polynomial Time Reductions
Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- **Input**: Given graph $G = (V, E)$ and integer k.
- **Question**: Does G contain a clique of size k?
Problem 2: 3-SAT

- **Input:** A boolean formula $\phi(x_1, \ldots, x_n)$ in conjunctive normal form with m clauses and 3 literals per clause, e.g.,

 \[(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3)\]

 where \bar{x}_i is “not x_i”, \land is “and”, \lor is “or.” We call x_i and \bar{x}_i literals.

- **Question:** Is there a setting of each x_i to TRUE or FALSE such that the formula is satisfied.
A Polynomial Time Reduction for 3-SAT to Clique

We’ll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

\[\phi = (l_{1,1} \lor l_{1,2} \lor l_{1,3}) \land (l_{2,1} \lor l_{2,2} \lor l_{2,3}) \land \ldots \land (l_{m,1} \lor l_{m,2} \lor l_{m,3}) \]

in poly-time, we can construct \(G_{\phi} = (V_{\phi}, E_{\phi}) \):

\[V_{\phi} = \{l_{i,j} : i \in [m], j \in [3]\} \]

\[E_{\phi} = \{(l_{i,j}, l_{k,l}) : i, k \in [m], j \in [3], i \neq k, l_{i,j} \neq \bar{l}_{k,l}\} \]

We’ll show \(\phi \) is satisfiable iff \(G_{\phi} \) has a clique of size \(m \)
\[\phi \] is satisfiable iff \(G_{\phi} \) has a clique of size \(m \)

Suppose \(\phi \) is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let \(Y \) be set of corresponding nodes
3. \(G_{\phi}[Y] \) is a clique because \(x_k \) and \(\bar{x}_k \) can't both be in \(Y \) for any \(k \)

Suppose \(G_{\phi} \) has a clique of size \(m \):

1. Let \(Y \) be the clique of size \(m \)
2. For each clause:
 - Exactly one node \(l \) from \(i \)-th clause is in \(Y \)
 - Set \(x_k = \text{TRUE} \) if \(l = x_k \) and set \(x_k = \text{FALSE} \) if \(l = \bar{x}_k \)
3. We can't set \(x_k \) to be true and false because literals \(x_k \) and \(\bar{x}_k \) can't both be in \(Y \)