Outline

Approximation Algorithms

Max Cut

Metric TSP 2-approx

Metric TSP 3/2 approximate
Approximation Ratios

Definition
The *performance ratio* of an algorithm is

$$\max_{x: |x|=n} \frac{C_{alg}(x)}{C_{opt}(x)}$$

for a minimization problem

$$\max_{x: |x|=n} \frac{C_{opt}(x)}{C_{alg}(x)}$$

for a maximization problem

where $C_{alg}(x)$ is the value of the algorithm solution on input x and $C_{opt}(x)$ is the value of the optimal solution on input x.
Vertex Cover

- **Input:** Graph $G = (V, E)$
- **Goal:** Find the vertex cover of smallest size?
2-approximation for Vertex Cover

Algorithm
1. $S = \emptyset$
2. While $E \neq \emptyset$, pick an edge $e = (u, v) \in E$
 - $S \leftarrow S + u + v$
 - $V \leftarrow V - u - v$
3. Return S

Theorem
The above algorithm returns a 2-approximation in polynomial time.

Proof.
- Let E' be the set of edges chosen:

 size of vertex cover found = $2|E'|$

- For any $(u, v) \in E'$, at least one of $\{u, v\}$ is in any vertex cover:

 size of optimal vertex cover $\geq |E'|$
Outline

Approximation Algorithms

Max Cut

Metric TSP 2-approx

Metric TSP 3/2 approximate
Max Cut

- **Input**: Unweighted graph $G = (V, E)$?
- **Goal**: Find the cut (A, B) that maximizes

$$|e = (u, v) \in E : u \in A, v \in B|$$

Theorem (see notes)

Max-Cut is NP-Complete.
Max Cut Approximation Algorithm

Algorithm

1. Let $A = \emptyset$, $B = V$
2. While $\exists v \in V$ such that switching side of v increases size of cut:

 move v to other side of cut

3. Return (A, B)

Theorem

The algorithm is a 2-approximation and runs in polynomial time.
Max-Cut Analysis

- Number of switches is at most $|E|$

- When the algorithm terminates, let

 $a(v) = \text{number of edges from } v \text{ that cross the cut}$

 $b(v) = \text{number of edges from } v \text{ that don’t cross the cut}$

- Note that $a(v) \geq b(v)$ and so $\sum_v a(v) \geq \sum_v b(v)$

- But $\sum_v a(v) + \sum_v b(v) = 2|E|$

 cut size $= \frac{\sum_v a(v)}{2} \geq \frac{\sum_v a(v)}{4} + \frac{\sum_v b(v)}{4} = \frac{|E|}{2}$
Outline

Approximation Algorithms

Max Cut

Metric TSP 2-approx

Metric TSP 3/2 approximate
Metric Travelling Salesperson Problem

- **Input:** Weighted graph $G = (V, E)$ and weights $w : E \rightarrow \mathbb{R}^+$ such that for any edges $e = (u, v), e' = (v, w), e'' = (u, w)$

 $$w_e + w_{e'} \geq w_{e''}$$

- **Goal:** Find the tour (a path that visits every node exactly once and returns to starting point) of minimum weight.

Theorem (see notes)

Metric TSP is NP-Complete.
Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree T_{mst} of G
2. Consider a “pseudo-tour” that walks around T_{mst}
3. Create tour from pseudo-tour by skipping pre-visited nodes

Theorem

The algorithm is a 2-approximation.

Proof.

- Cost of pseudo-tour is twice cost of T_{mst}
- Cost of tour found is at most cost of pseudo-tour

 \[
 \text{cost(tour found)} \leq \text{cost(pseudo tour)} = 2 \cdot \text{cost}(T_{mst})
 \]
- Cost of T_{mst} is at most cost of optimal tour

 \[
 \text{cost}(T_{mst}) \leq \text{cost(optimal tour)}
 \]
Outline

Approximation Algorithms

Max Cut

Metric TSP 2-approx

Metric TSP 3/2 approximate
Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has even degree.
Metric TSP Approximation Algorithm

Algorithm

1. *Compute minimum spanning tree* T_{mst} *of* G
2. *Let* D *be the nodes in* T_{mst} *that have odd degree*
3. *Find minimum cost perfect matching* M *on nodes of* D
4. *Find Euler tour of* $T_{mst} + M$
5. *Transform into tour by short-cutting repeated vertices.*
Analysis

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

▶ Cost of tour found is at most cost of Euler tour

\[\text{cost(tour found)} \leq \text{cost(Euler tour)} = \text{cost(} T_{\text{mst}} \text{)} + \text{cost(} M \text{)} \]

▶ As before, \(\text{cost(} T_{\text{mst}} \text{)} \leq \text{cost(} \text{optimal tour} \text{)} \)

▶ Cost of \(M \) is at most half cost of optimal tour

\[\text{cost(} M \text{)} \leq \frac{1}{2} \text{cost(} \text{optimal tour} \text{)} \]

Let \(D = \{d_1, \ldots, d_k\} \) be ordered according to optimal tour.

\[
\begin{align*}
\text{cost(} \text{optimal tour} \text{)} & \geq w_{d_1,d_2} + w_{d_2,d_3} + \ldots + w_{d_k,d_1} \\
& = (w_{d_1,d_2} + w_{d_3,d_4} + \ldots w_{d_{k-1},d_k}) + \\
& \quad (w_{d_2,d_3} + w_{d_4,d_5} + \ldots w_{d_k,d_1})
\end{align*}
\]
For Next Time...

- Finish reading up to Chapter 8.5.