CMPSCI 611: Advanced Algorithms
Lecture 18: NP-Completeness

Andrew McGregor
Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- **Input:** Given graph $G = (V, E)$ and integer k.
- **Question:** Does G contain a clique of size k?
Problem 2: 3-SAT

▶ Input: A boolean formula $\phi(x_1, \ldots, x_n)$ in *conjunctive normal form* with m clauses and 3 literals per clause, e.g.,

$$(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3)$$

where \bar{x}_i is “not x_i”, \land is “and”, \lor is “or.” We call x_i and \bar{x}_i *literals*.

▶ Question: Is there a setting of each x_i to TRUE or FALSE such that the formula is satisfied.
Theorem
There exists a polynomial time algorithm for 3-SAT iff there exists a polynomial time algorithm for Clique.

This will follow because:
1. Clique is “in NP”
2. 3-SAT is “NP-complete”
3. There exists a “polynomial time reduction” from 3-SAT to Clique.

It is widely believed that 3-SAT can’t be solved in poly-time. Hence, the belief that Clique can’t be solved in poly-time is just as strong.
P and NP Definitions

Definition
Π is a decision problem if it only has a “yes” or “no” answer.

Definition (P)
Π ∈ P iff there exists a polynomial time algorithm A such that:

\[(X \text{ is a “yes” instance of } \Pi) \iff (A(X) = “yes”)\]

Definition (NP)
Π ∈ NP iff there exists a polynomial time algorithm A such that:

\[(X \text{ is a “yes” instance of } \Pi) \implies (\exists Y : |Y| = \text{poly}(|X|), A(X, Y) = “yes”)\]
\[(X \text{ is a “no” instance of } \Pi) \implies (\forall Y : |Y| = \text{poly}(|X|), A(X, Y) = “yes”)\]

We call Y a witness.
Example: Clique

- **Input:** Given graph $G = (V, E)$ and integer k.
- **Question:** Does G contain a clique of size k?

Lemma

Clique is in NP.

Proof.

1. Suppose the witness Y encodes a set of k nodes in V and $A(G, Y)$ checks if the induced graph on Y, $G[Y]$ is a clique.
2. A is a polynomial time algorithm.
3. If there exists a clique of size k, there exists Y of size k such that $A(G, Y)$ outputs “yes”
4. If there doesn’t exist a clique of size k, there doesn’t exist Y of size k such that $A(G, Y)$ outputs “yes”
Polynomial Time Reduction

Definition
Given two decision problems Π_1, Π_2 we say Π_2 is polynomial time reducible to Π_1 iff there exists a polynomial time algorithm f that transforms any instance X of Π_2 to an instance $f(X)$ of Π_1 such that:

$$(X \text{ is a “yes” instance of } \Pi_2) \iff (f(X) \text{ is a “yes” instance of } \Pi_1)$$

We write $\Pi_2 \leq_p \Pi_1$ to denote “Π_2 is polynomial time reducible to Π_1”.

Easy Example: Independent-Set is polynomial time reducible to Clique
NP-Completeness

Definition
A decision problem Π is NP-Hard iff for all $\Pi' \in NP$, $\Pi' \leq_P \Pi$.

Definition
A decision problem Π is NP-Complete iff both of the following conditions are satisfied:
1. Π is NP-Hard
2. $\Pi \in NP$

Note: If Π is NP-Complete and $\Pi \in P$ then $P = NP$

Theorem (Cook 1971)
3-SAT is NP-Complete.
Clique is NP-Complete

Theorem

Clique is NP-Complete

Proof.

1. We’ve already shown Clique $\in NP$
2. Because 3-SAT is NP-complete, it suffices to show 3-SAT $\leq P$ Clique
3. Given formula 3-SAT

$$\phi = (l_{1,1} \lor l_{1,2} \lor l_{1,3}) \land (l_{2,1} \lor l_{2,2} \lor l_{2,3}) \land \ldots \land (l_{m,1} \lor l_{m,2} \lor l_{m,3})$$

in poly-time we can construct $G_{\phi} = (V_{\phi}, E_{\phi})$:

$$V_{\phi} = \{l_{i,j} : i \in [m], j \in [3]\}$$

$$E_{\phi} = \{(l_{i,j}, l_{k,l}) : i, k \in [m], j \in [3], i \neq k, l_{i,j} \neq \overline{l}_{k,l}\}$$

4. **Claim:** ϕ is satisfiable iff G_{ϕ} has a clique of size m
ϕ is satisfiable iff \(G_ϕ \) has a clique of size \(m \)

Suppose \(ϕ \) is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let \(Y \) be set of corresponding nodes
3. \(G_ϕ[Y] \) is a clique because \(x_k \) and \(\bar{x}_k \) can’t both be in \(Y \) for any \(k \)

Suppose \(G_ϕ \) has a clique of size \(m \):

1. Let \(Y \) be the clique of size \(m \)
2. For each clause:
 - Exactly one node \(l \) from \(i \)-th clause is in \(Y \)
 - Set \(x_k = \text{TRUE} \) if \(l = x_k \) and set \(x_k = \text{FALSE} \) if \(l = \bar{x}_k \)
3. We can’t set \(x_k \) to be true and false because literals \(x_k \) and \(\bar{x}_k \) can’t both be in \(Y \)