CMPSCI 611: Advanced Algorithms

Andrew McGregor
Residual
Augmenting Path

\[\begin{align*}
\text{Augmenting Path} & \\
& \begin{array}{cccc}
v_1 & v_2 & v_3 & v_4 \\
11 & 12 & 5 & 15 \\
5 & 5 & 4 & 5 \\
11 & 3 & 7 & 4 \\
8 & 3 & 11 & 11 \\
\end{array}
\end{align*} \]
New Residual Graph
Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. flow $f = 0$
2. while there exists an augmenting path p for f
 - 2.1 find shortest (unweighted) augmenting path p
 - 2.2 augment f by $b(p)$ units along p
3. return f

Theorem
The algorithms finds a maximum flow in time $O(|E|^2|V|)$
Proof of Running Time (1/3)

Definition
Let $\delta_f(s, u)$ be length of shortest unweighted path from s to u in the G_f.

Definition
(u, v) is critical if it’s on augmenting path p for f and $C_f(u, v) = b(p)$.

Lemma
$\delta_f(s, v)$ is non-decreasing as f changes.

Lemma
Between occasions when (u, v) is critical, $\delta_f(s, u)$ increases by at least 2.

Proof of Running Time.

- Max distance in G_f is $|V|$ so any edge is critical at most $|V|/2$ times
- At most $2|E|$ edges in residual network
- There’s a critical edge in each iteration so $O(|E||V|)$ iterations
- Each iteration takes $O(|E|)$ to find shortest path
Proof of Running Time (2/3)

Lemma

δ_f(s, v) is non-decreasing as f changes.

Proof.

- Consider augmenting f to f′
- For contradiction, pick v that minimizes δ_f′(s, v) subject to:

 δ_f′(s, v) < δ_f(s, v)

 and let u be vertex before v on shortest path in G_f′ from s to v

- **Claim** (u, v) \∉ E_f
 - Otherwise δ_f(s, v) ≤ δ_f(s, u) + 1
 - But δ_f(s, u) ≤ δ_f′(s, u) and so δ_f(s, v) ≤ δ_f′(s, u) + 1 = δ_f′(s, v)

- (u, v) \∉ E_f and (u, v) \in E_f′ implies augmentation contains (v, u)
- Since augmentation was shortest path:

 δ_f(s, v) = δ_f(s, u) − 1 ≤ δ_f′(s, u) − 1 = δ_f′(s, v) − 2
Proof of Running Time (3/3)

Lemma

Between occasions when \((u, v)\) is critical, \(\delta_f(s, u)\) increases by at least 2.

Proof.

- Let \((u, v)\) be critical in the augmentation of \(f\)
- Since \((u, v)\) on shortest path: \(\delta_f(s, u) = \delta_f(s, v) - 1\)
- After augmentation \((u, v)\) disappears from residual network!
- Let \(f''\) be next flow with \((u, v) \in G_{f''}\) and \(f'\) be flow right before \(f''\)
- \((u, v) \not\in G_{f'}\) but \((u, v) \in G_{f''}\) implies \((v, u)\) used to augment \(f'\)
- Therefore \(\delta_{f'}(s, v) = \delta_{f'}(s, u) - 1\) and so

\[
\delta_f(s, u) = \delta_f(s, v) - 1 \leq \delta_{f'}(s, v) - 1 = \delta_{f'}(s, u) - 2
\]
Probability Refresher

- **Expectation of random variable:**

\[
\mathbb{E}[X] = \sum_r r \mathbb{P}[X = r]
\]

- **Linearity of expectation:**

\[
\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]
\]

- **Conditional Probability:** For arbitrary events \(A\) and \(B\),

\[
\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}
\]

and

\[
\mathbb{P}[\cap_{i=1}^n A_i] = \mathbb{P}[A_1] \mathbb{P}[A_2|A_1] \ldots \mathbb{P}[A_n|\cap_{i=1}^{n-1} A_i]
\]
Quicksort

Problem: Sort an array of distinct values $X = [x_1, \ldots, x_n]$

Algorithm

1. *Pick a pivot* $x \in X$ *at random from the array*
2. *Construct new arrays* $Y = [y_1, \ldots, y_k]$, $Z = [z_1, \ldots, z_{n-k-1}]$ *where*
 $$y < x < z \text{ for all } y \in Y, z \in Z$$
3. *Recursively sort Y and Z to get Y' and Z'*
4. *Return the array that concatenates Y', x, and Z'*

What’s the expected number of comparisons performed in this algorithm?
Probability two items are compared

Lemma

Let a and b be the i-th and j-th smallest element of X where $i < j$.

$$\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}$$

Proof.

1. Consider $S = \{x \in X : a \leq x \leq b\}$
2. a and b are compared iff the first pivot chosen from S is either a or b
3. Elements of S are equally likely to be chosen as a pivot, so

$$\Pr[a \text{ is compared to } b] = \frac{2}{|S|} = \frac{2}{j - i + 1}$$
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.

Proof.

1. Let $Z_{ij} = 1$ if the i-th smallest element is compared to j-th smallest element and $Z_{ij} = 0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i < j \leq n} Z_{ij}$
3. Expected number of comparisons:

$$
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = \sum_{1 \leq i < j \leq n} \mathbb{E}[Z_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = \sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
$$

4. Because $H_n = 1 + 1/2 + 1/3 + \ldots + 1/n = O(\log n)$,

$$
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = O(n \log n)
$$