Residual
Augmenting Path
New Residual Graph
Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. \(\text{flow } f = 0 \)
2. \text{while there exists an augmenting path } p \text{ for } f \\
 2.1 \text{ find shortest (unweighted) augmenting path } p \\
 2.2 \text{ augment } f \text{ by } b(p) \text{ units along } p \\
3. \text{return } f

Theorem
The algorithm finds a maximum flow in time \(O(|E|^2|V|) \)
Proof of Running Time (1/3)

Definition
Let $\delta_f(s, u)$ be length of shortest unweighted path from s to u in the G_f.

Definition
(u, v) is critical if it’s on augmenting path p for f and $C_f(u, v) = b(p)$.

Lemma
$\delta_f(s, v)$ is non-decreasing as f changes.

Lemma
Between occasions when (u, v) is critical, $\delta_f(s, u)$ increases by at least 2.

Proof of Running Time.

- Max distance in G_f is $|V|$ so any edge is critical at most $|V|/2$ times
- At most $2|E|$ edges in residual network
- There’s a critical edge in each iteration so $O(|E||V|)$ iterations
- Each iteration takes $O(|E|)$ to find shortest path
Proof of Running Time (2/3)

Lemma
\(\delta_f(s, v) \) is non-decreasing as \(f \) changes.

Proof.

- Consider augmenting \(f \) to \(f' \)
- For contradiction, pick \(v \) that minimizes \(\delta_{f'}(s, v) \) subject to:
 \[\delta_{f'}(s, v) < \delta_f(s, v) \]
 and let \(u \) be vertex before \(v \) on shortest path in \(G_{f'} \) from \(s \) to \(v \)
- Claim \((u, v) \notin E_f \)
 - Otherwise \(\delta_f(s, v) \leq \delta_f(s, u) + 1 \)
 - But \(\delta_f(s, u) \leq \delta_{f'}(s, u) \) and so \(\delta_f(s, v) \leq \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v) \)
- \((u, v) \notin E_f \) and \((u, v) \in E_{f'} \) implies augmentation contains \((v, u) \)
- Since augmentation was shortest path:
 \[\delta_f(s, v) = \delta_f(s, u) - 1 \leq \delta_{f'}(s, u) - 1 = \delta_{f'}(s, v) - 2 \]
Lemma

Between occasions when \((u, v)\) is critical, \(\delta_f(s, u)\) increases by at least 2.

Proof.

- Let \((u, v)\) be critical in the augmentation of \(f\)
- Since \((u, v)\) on shortest path: \(\delta_f(s, u) = \delta_f(s, v) - 1\)
- After augmentation \((u, v)\) disappears from residual network!
- Let \(f''\) be next flow with \((u, v) \in G_{f''}\) and \(f'\) be flow right before \(f''\)
- \((u, v) \notin G_{f'}\) but \((u, v) \in G_{f''}\) implies \((v, u)\) used to augment \(f'\)
- Therefore \(\delta_{f'}(s, v) = \delta_{f'}(s, u) - 1\) and so

\[
\delta_f(s, u) = \delta_f(s, v) - 1 \leq \delta_{f'}(s, v) - 1 = \delta_{f'}(s, u) - 2
\]
Probability Refresher

- **Expectation of random variable:**

 \[\mathbb{E}[X] = \sum_r r \mathbb{P}[X = r] \]

- **Linearity of expectation:**

 \[\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \]

- **Conditional Probability:** For arbitrary events \(A \) and \(B \),

 \[\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} \]

 and \(\mathbb{P}[\bigcap_{i=1}^n A_i] = \mathbb{P}[A_1] \mathbb{P}[A_2|A_1] \ldots \mathbb{P}[A_n|\bigcap_{i=1}^{n-1} A_i] \)
Quicksort

Problem: Sort an array of distinct values \(X = [x_1, \ldots, x_n] \)

Algorithm

1. *Pick a pivot* \(x \in X \) at random from the array
2. *Construct new arrays* \(Y = [y_1, \ldots, y_k], Z = [z_1, \ldots, z_{n-k-1}] \) where
 \[
 y < x < z \text{ for all } y \in Y, z \in Z
 \]
3. *Recursively sort* \(Y \) and \(Z \) to get \(Y' \) and \(Z' \)
4. *Return the array that concatenates* \(Y', x, \) and \(Z' \)

What’s the expected number of comparisons performed in this algorithm?
Probability two items are compared

Lemma
Let a and b be the i-th and j-th smallest element of X where $i < j$.

$$\Pr[a \text{ is compared to } b] = \frac{2}{j - i + 1}$$

Proof.
1. Consider $S = \{ x \in X : a \leq x \leq b \}$
2. a and b are compared iff the first pivot chosen from S is either a or b
3. Elements of S are equally likely to be chosen as a pivot, so

$$\Pr[a \text{ is compared to } b] = \frac{2}{|S|} = \frac{2}{j - i + 1}$$
Expected Number of Comparisons

Lemma

Expected number of comparisons performs is \(O(n \log n) \).

Proof.

1. Let \(Z_{ij} = 1 \) if the \(i \)-th smallest element is compared to \(j \)-th smallest element and \(Z_{ij} = 0 \) otherwise.
2. Number of comparisons: \(\sum_{1 \leq i < j \leq n} Z_{ij} \)
3. Expected number of comparisons:

\[
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = \sum_{1 \leq i < j \leq n} \mathbb{E} [Z_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = \sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
\]

4. Because \(H_n = 1 + 1/2 + 1/3 + \ldots + 1/n = O(\log n) \),

\[
\mathbb{E} \left[\sum_{1 \leq i < j \leq n} Z_{ij} \right] = O(n \log n)
\]