Definitions

Input:
- Directed Graph $G = (V, E)$
- Capacities $C(u, v) > 0$ for $(u, v) \in E$ and $C(u, v) = 0$ for $(u, v) \notin E$
- A source node s, and sink node t
Capacity
Definitions

Input:
- Directed Graph $G = (V, E)$
- Capacities $C(u, v) > 0$ for $(u, v) \in E$ and $C(u, v) = 0$ for $(u, v) \not\in E$
- A source node s, and sink node t

Output: A flow f from s to t where $f : V \times V \rightarrow \mathbb{R}$ satisfies
- Skew-symmetry: $\forall u, v \in V, f(u, v) = -f(v, u)$
- Conservation of Flow: $\forall v \in V - \{s, t\}, \sum_{u \in V} f(u, v) = 0$
- Capacity Constraints: $\forall u, v \in V, f(u, v) \leq C(u, v)$

Goal: Maximize “size of the flow”, i.e., the total flow coming leaving s:

$$|f| = \sum_{v \in V} f(s, v)$$
Capacity

\[
\begin{array}{cccc}
v_1 & v_2 & v_3 & v_4 \\
16 & 12 & 10 & 7 \\
13 & 9 & 14 & 4 \\
10 & 4 & 14 & 7 \\
\end{array}
\]
Cut Definitions

Definition
An \(s - t \) cut of \(G \) is a partition of the vertices into two sets \(A \) and \(B \) such that \(s \in A \) and \(t \in B \).

Definition
The capacity of a cut \((A, B)\) is

\[
C(A, B) = \sum_{u \in A, v \in B} C(u, v)
\]

Definition
The flow across a cut \((A, B)\) is

\[
f(A, B) = \sum_{u \in A, v \in B} f(u, v)
\]

Note that because of capacity constraints: \(f(A, B) \leq C(A, B) \)
First Cut
Second Cut

Graph with nodes labeled s, v1, v2, v3, v4, and t. Edges with weights include 16/11, 13/8, 14/11, 12/12, 9/4, 4/1, 20/15, 7/7, 4/4, and 10/0. The graph shows connections between these nodes with various edge weights.
All cuts have same flow

Lemma
For any flow f: for all s-t cuts (A, B), $f(A, B)$ equals $|f|$.

Proof.

- By induction on size of A where $s \in A$
- **Base Case:** $A = \{s\}$ and $f(s, V - s) = |f|$
- **Induction Hypothesis:** $f(A, B) = |f|$ for all A such that $|A| = k$
- Consider cut (A', B') where $|A'| = k + 1$. Let $u \in A' - s$:

\[
f(A', B') = f(A' - u, B' + u) - \sum_{v \in A'} f(v, u) + \sum_{v \in B'} f(u, v)
\]

- By skew-symmetry and conservation of flow

\[
\sum_{v \in A'} f(v, u) - \sum_{v \in B'} f(u, v) = \sum_{v \in A'} f(v, u) + \sum_{v \in B'} f(v, u) = \sum_{v \in V} f(v, u) = 0
\]

- Hence, $f(A', B') = f(A' - u, B' + u) = |f|$ by induction hypothesis.
Theorem (Max-Flow Min-Cut)

For any flow network and flow f, the following statements are equivalent:

1. f is a maximum flow.
2. There exists an $s-t$ cut (A,B) such that $|f| = C(A,B)$
Residual Networks and Augmenting Paths

Residual network encodes how you can change the flow between two nodes given the current flow and the capacity constraints.

Definition
Given a flow network $G = (V, E)$ and flow f in G, the residual network G_f is defined as

$$G_f = (V, E_f) \text{ where } E_f = \{(u, v) : C(u, v) - f(u, v) > 0\}$$

$$C_f(u, v) = C(u, v) - f(u, v)$$

Note that $(u, v) \in E_f$ implies either $C(u, v) > 0$ or $C(v, u) > 0$.

Definition
An augmenting path for flow f is a path from s to t in graph G_f. The bottleneck capacity $b(p)$ is the minimum capacity in G_f of any edge of p. We can increase flow by $b(p)$ along an augmenting path.
Capacity/Flow

Diagram showing a network with nodes labeled s, v1, v2, v3, and v4, and edges with capacities and flows indicated. The capacities and flows are as follows:

- From s to v1: 16/11, 10/0, 13/8
- From v1 to v2: 12/12
- From v1 to v3: 4/1
- From v2 to t: 20/15
- From v2 to v4: 9/4, 7/7
- From v3 to v4: 14/11
- From v3 to v1: 4/1
- From v4 to t: 4/4
Augmenting Path
Old Flow
New Flow
Min Capacity Cut Proves this is Optimal

Graph with nodes labeled s, v_1, v_3, v_4, v_2, and t. Edges and capacities:
- s to v_3: $13/12$
- s to v_1: $16/11$
- v_3 to t: $14/11$
- v_1 to v_2: $12/12$
- v_2 to t: $20/19$
- v_3 to v_1: $4/1$
- v_1 to v_2: $9/0$
- v_2 to t: $7/7$
- v_4 to t: $4/4$
Old Residual Graph

\[\begin{align*}
v_1 &\rightarrow v_2, 12 \\
v_2 &\rightarrow t, 15 \\
v_1 &\rightarrow v_3, 5 \\
v_3 &\rightarrow v_4, 11 \\
v_3 &\rightarrow s, 8 \\
v_2 &\rightarrow v_4, 4 \\
v_1 &\rightarrow v_3, 3 \\
v_4 &\rightarrow t, 4 \\
\end{align*} \]
New Residual Graph
Max-Flow Min-Cut

Theorem (Max-Flow Min-Cut)

For any flow network and flow f, the following statements are equivalent:

1. f is a maximum flow.
2. There exists an $s-t$ cut (A, B) with $|f| = f(A, B) = C(A, B)$.
3. There doesn't exist an augmenting path in G_f.

Proof.

- $(2 \Rightarrow 1)$: Increasing flow, increases $f(A, B)$ which violates capacity.
- $(1 \Rightarrow 3)$: If p is an augmenting path, can increase flow by $b(p)$.
- $(3 \Rightarrow 2)$: Suppose G_f has no augmenting path. Define cut

 \[A = \{v : v \text{ is reachable from } s \text{ in } G_f\} \text{ and } B = V - A \]

 \[\forall u \in A, v \in B, f(u, v) = C(u, v). \text{ Hence } C(A, B) = f(A, B) = |f| \]
Ford-Fulkerson Algorithm

Algorithm

1. flow $f = 0$
2. while there exists an augmenting path p for f
 2.1 find augmenting path p
 2.2 augment f by $b(p)$ units along p
3. return f

Theorem
The algorithms finds a maximum flow in time $O(|E||f^*|)$ if capacities are integral where $|f^*|$ is the size of the maximum flow.

Proof.
$O(|E|)$ time to find each augmenting path via BFS and $|f^*|$ iterations because each augmenting path increases flow by at least 1. □
Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. flow $f = 0$
2. while there exists an augmenting path p for f
 2.1 find shortest (unweighted) augmenting path p
 2.2 augment f by $b(p)$ units along p
3. return f

Theorem
The algorithms finds a maximum flow in time $O(|E|^2|V|)$
Proof of Running Time (1/3)

Definition
Let $\delta_f(s, u)$ be length of shortest unweighted path from s to u in the G_f.

Definition
(u, v) is critical if it’s on augmenting path p for f and $C_f(u, v) = b(p)$.

Lemma
$\delta_f(s, v)$ is non-decreasing as f changes.

Lemma
Between occasions when (u, v) is critical, $\delta_f(s, u)$ increases by at least 2.

Proof of Running Time.

- Max distance in G_f is $|V|$ so any edge is critical at most $|V|/2$ times
- At most $2|E|$ edges in residual network
- There’s a critical edge in each iteration so $O(|E||V|)$ iterations
- Each iteration takes $O(|E|)$ to find shortest path
Proof of Running Time (2/3)

Lemma
\(\delta_f(s, v) \) is non-decreasing as \(f \) changes.

Proof.

- Consider augmenting \(f \) to \(f' \)
- For contradiction, pick \(v \) that minimizes \(\delta_{f'}(s, v) \) subject to:
 \[\delta_{f'}(s, v) < \delta_f(s, v) \]
 and let \(u \) be vertex before \(v \) on shortest path in \(G_{f'} \) from \(s \) to \(v \)
- Claim \((u, v) \notin E_f \)
 - Otherwise \(\delta_f(s, v) \leq \delta_f(s, u) + 1 \)
 - But \(\delta_f(s, u) \leq \delta_{f'}(s, u) \) and so \(\delta_f(s, v) \leq \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v) \)
- \((u, v) \notin E_f \) and \((u, v) \in E_{f'} \) implies augmentation contains \((v, u) \)
- Since augmentation was shortest path:
 \[\delta_f(s, v) = \delta_f(s, u) - 1 \leq \delta_{f'}(s, u) - 1 = \delta_{f'}(s, v) - 2 \]
Lemma

Between occasions when \((u, v)\) is critical, \(\delta_f(s, u)\) increases by at least 2.

Proof.

- Let \((u, v)\) be critical in the augmentation of \(f\).
- Since \((u, v)\) on shortest path: \(\delta_f(s, u) = \delta_f(s, v) - 1\).
- After augmentation \((u, v)\) disappears from residual network!
- Let \(f''\) be next flow with \((u, v) \in G_{f''}\) and \(f'\) be flow right before \(f''\).
- \((u, v) \not\in G_{f'}\) but \((u, v) \in G_{f''}\) implies \((v, u)\) used to augment \(f'\).
- Therefore \(\delta_{f'}(s, v) = \delta_{f'}(s, u) - 1\) and so

\[
\delta_f(s, u) = \delta_f(s, v) - 1 \leq \delta_{f'}(s, v) - 1 = \delta_{f'}(s, u) - 2
\]